Mots-clés : circular domains
@article{VYURM_2018_10_3_a5,
author = {K. M. Rasulov and Sh. S. Khankishieva},
title = {On the instability of solutions of the homogeneous boundary value problem of {Riemann} type for quasiharmonic functions in circular domains},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {52--58},
year = {2018},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a5/}
}
TY - JOUR AU - K. M. Rasulov AU - Sh. S. Khankishieva TI - On the instability of solutions of the homogeneous boundary value problem of Riemann type for quasiharmonic functions in circular domains JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 52 EP - 58 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a5/ LA - ru ID - VYURM_2018_10_3_a5 ER -
%0 Journal Article %A K. M. Rasulov %A Sh. S. Khankishieva %T On the instability of solutions of the homogeneous boundary value problem of Riemann type for quasiharmonic functions in circular domains %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 52-58 %V 10 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a5/ %G ru %F VYURM_2018_10_3_a5
K. M. Rasulov; Sh. S. Khankishieva. On the instability of solutions of the homogeneous boundary value problem of Riemann type for quasiharmonic functions in circular domains. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 3, pp. 52-58. http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a5/
[1] Rasulov K. M., “On the Method of Solution of the Riemann Type Boundary Value Problem in Classes of Quasiharmonic Functions of Arbitrary Genus”, Izvestiya Smolenskogo gosudarstvennogo universiteta, 2015, no. 2/1, 159–168 (in Russ.)
[2] Rasulov K. M., Khankishieva Sh. S., “On a boundary-value problem of Riemann type of quasiharmonic functions in a circle of a non-unitary radius”, Proc. XVII international scientific conference, Computer mathematics systems and their applications, 17, Izdatel'stvo SmolGU Publ., Smolensk, 2016, 211–216 (in Russ.)
[3] Gakhov F. D., Boundary value problems, Nauka Publ., M., 1977, 640 pp. (in Russ.)
[4] Koddington E. A., Levinson N., Theory of Ordinary Differential Equations, Izd-vo inostrannoy literatury Publ., M., 1958, 474 pp. (in Russ.)