Self-stabilizing mobile medical robots scattering algorithm
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 3, pp. 41-51
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the possibility of determinate and probabilistic scattering under various assumptions of the state of the locations of medical robots in both fault-tolerance and vulnerable environments. The topicality of the work is due to the need to place medical robots in the coordinate space having disjoint polygons (robot bodies) which is absolutely unacceptable in the case of medical applications. As a limitation it is assumed that the medical robot sees its nearest neighbors and local monitor of multiplicity is functioning, which can determine the situation when robots occupy intersecting spaces. We propose a probabilistic scattering algorithm which describes the initial states of medical robots and the proper transient state algorithm which can predict the movement of robots to a location where they can intersect. It is shown, that when using the algorithm the states and motion algorithms can be estimated in a fault-tolerance (robots do not fail and the medium is stationary) and vulnerable (the robot may fail and the byzantine problem is not solved, the environment changes faster than the robot can react) environments. The estimates for the computational complexity of the algorithm working without the mission planner are given.
Keywords: mobile medical robots, fault-tolerance, probabilistic scattering, self-stabilization.
@article{VYURM_2018_10_3_a4,
     author = {O. N. Melekhova and R. V. Meshcheryakov},
     title = {Self-stabilizing mobile medical robots scattering algorithm},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {41--51},
     year = {2018},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a4/}
}
TY  - JOUR
AU  - O. N. Melekhova
AU  - R. V. Meshcheryakov
TI  - Self-stabilizing mobile medical robots scattering algorithm
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2018
SP  - 41
EP  - 51
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a4/
LA  - en
ID  - VYURM_2018_10_3_a4
ER  - 
%0 Journal Article
%A O. N. Melekhova
%A R. V. Meshcheryakov
%T Self-stabilizing mobile medical robots scattering algorithm
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2018
%P 41-51
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a4/
%G en
%F VYURM_2018_10_3_a4
O. N. Melekhova; R. V. Meshcheryakov. Self-stabilizing mobile medical robots scattering algorithm. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 3, pp. 41-51. http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a4/

[1] Kukushkin Yu. A., Bogomolov A. V., Guziy A. G., “Principles of construction of the lifeperformance system of “man-mashine” system operators adaptive to their functional state”, Mechatronics, automation, control, 2005, no. 3, 50–54 (in Russ.)

[2] Goryachkina T. G., Ushakov I. B., Evdokimov V. I., Bogomolov A. V., “Methodical and Methodological Recommendations for Inventors of Innovations Aimed at Assessing the Functional State of A Human Operator”, Journal Technologies of Living Systems, 3:3 (2006), 33–38 (in Russ.)

[3] Bogomolov A. V., Kukushkin Yu. A., “Personalized monitoring automation of the labor conditions”, Automation. Modern technologies, 2015, no. 3, 6–8 (in Russ.)

[4] W.-M. Shen, M. Krivokon, H. Chiu et al., “Multimode locomotion for reconfigurable robots”, Autonomous Medical robots, 20:2 (2006), 165–177 | DOI

[5] A. Efrima, D. Peleg, “Distributed models and algorithms for mobile robot systems”, SOFSEM 2007: Theory and Practice of Computer Science, Lecture Notes in Computer Science, 4362, Springer, Berlin–Heidelberg, 2007, 70–87 | DOI | MR | Zbl

[6] I. Suzuki, M. Yamashita, “Distributed anonymous mobile robots: Formation of geometric patterns”, SIAM J. Comput., 28:4 (1999), 1347–1363 | DOI | MR | Zbl

[7] G. Prencipe, “Distributed coordination of a set of autonomous mobile robots”, Proceeding of fourth European research seminar on advances in distributed systems, ERSADS 2001 (Bertinoro, Italy, mai 2011), 185–190

[8] N. Agmon, D. Peleg, “Fault-tolerant gathering algorithms for autonomous mobile robots”, SIAM J. Comput., 36:1 (2006), 56–82 | DOI | MR | Zbl

[9] I. Suzuki, M. Yamashita, A theory of distributed anonymous mobile robots — formation problems, Technical report, Department of Electrical Engineering and Computer Science University of Wisconsin, 1994 | MR | Zbl

[10] Y. Dieudonné, F. Petit, Scatter of weak robots, CoRR., 2007, arXiv: cs/0701179 [cs.DC] | MR

[11] E.W. Dijkstra, “Self-stabilizing systems in spite of distributed control”, Communications of the ACM, 17:11 (1974), 643–644 | DOI | Zbl

[12] S. Dolev, Self-Stabilization, MIT Press, 2000, 208 pp. | Zbl

[13] Gorbunov I. V., Zaitsev A. A., Meshcheryakov R. V., Hodashinsky I. A., “A decision support system for prescription of non-medication-based rehabilitation”, Biomedical Engineering, 50:6 (2017), 393–397 | DOI

[14] Iskhakov A., “The internet of things in the security industry”, Interactive Systems: Problems of Human-Computer Interaction, 2017, 161–168