Alternative routs of games with rigid schedule
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 3, pp. 30-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Corporative-competitive system, which is inside of corporations, can be determined as a “game”, step-by-step performing a certain type of activity. The system operates in real physical time, and the result of operation is the distance, which is divided into stages. The stages are passed by the team participants due to rigid schedule, which may be occasionally selected from the set of possible schedules. The abstraction “M-parallel semi-Markov process” is used for description of a system under consideration. In semi-Markov process degenerate distribution is used for description of time intervals between relay points. For analysis of relay-race evolution, recurrent method which takes into account rigidity of schedule and stochastic character of route selection is used. In accordance with the concept of distributed forfeit and proposed recurrent procedure, the method of calculation of summing forfeit, which one of competing teams receives from other teams, is proposed.
Keywords: relay-race, semi-Markov process, degenerate distribution, distributed forfeit, recurrent procedure.
Mots-clés : route, evolution
@article{VYURM_2018_10_3_a3,
     author = {E. V. Larkin and A. N. Privalov},
     title = {Alternative routs of games with rigid schedule},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {30--40},
     year = {2018},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a3/}
}
TY  - JOUR
AU  - E. V. Larkin
AU  - A. N. Privalov
TI  - Alternative routs of games with rigid schedule
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2018
SP  - 30
EP  - 40
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a3/
LA  - en
ID  - VYURM_2018_10_3_a3
ER  - 
%0 Journal Article
%A E. V. Larkin
%A A. N. Privalov
%T Alternative routs of games with rigid schedule
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2018
%P 30-40
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a3/
%G en
%F VYURM_2018_10_3_a3
E. V. Larkin; A. N. Privalov. Alternative routs of games with rigid schedule. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 3, pp. 30-40. http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a3/

[1] Dynamic Programming, Dover Publications, Inc., N.Y., 2003, 384 pp. | MR

[2] Ivutin A. N., Larkin E. V., “Simulation of Concurrent Games”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:2 (2015), 43–54 | DOI | Zbl

[3] E.V. Larkin, A.V. Bogomolov, A.N. Privalov, “A method for estimating the time intervals between transactions in speech-compression algorithms”, Automatic documentation and mathematical linguistics, 51:5 (2017), 214–219 | DOI

[4] A.N. Ivutin, E.V. Larkin, V.V. Kotov, “Established Routine of Swarm Monitoring Systems Functioning”, Advances in Swarm and Computational Intelligence, ICS Lecture Notes in Computer Science, 9141, Springer, Cham, 2015, 415–422 | DOI

[5] A.N. Ivutin, E.V. Larkin, Yu.I. Lutskov, “Simulation of Concurrent Games in Distributed Systems”, The 5th International Workshop on Computer Science and Engineering (WCSE 2015) (Moscow, Russia, April 15–17, 2015), 60–65

[6] V. Korolyuk, A. Swishchuk, “Semi-Markov random evolutions”, Semi-Markov Random Evolutions, Mathematics and Its Applications, 308, Springer, Dordrecht, 1995, 59–91 | DOI | MR

[7] E.V. Larkin, Yu.I. Lutskov, A.N. Ivutin, A.S. Novikov, “Simulation of concurrent process with Petri-Markov nets”, Life Science Journal, 11:11 (2014), 506–511 | DOI

[8] E. Larkin, A. Bogomolov, A. Privalov, “Data buffering in information-measuring system”, 2-nd International Ural conference on measurements (UralCon) (Chelyabinsk, 2017), 118–123 | DOI

[9] A.N. Shiryaev, Probability, Springer, New York, NY, 1996, 623 pp. | DOI | MR

[10] R. Cleaveland, S. Smolka, “Strategic directions in concurrency research”, ACM Computing Surveys (CSUR), 28:4 (1996), 607–625 | DOI

[11] M. Heymann, “Concurrency and Discrete Event Control”, IEEE Control Systems Magazine, 10:4 (1990), 103–112 | DOI

[12] R. Valk, “Concurrency in Communicating Object Petri Nets”, Concurrent Object-Oriented Programming and Petri Nets, Lecture Notes in Computer Science, 2001, Springer, Berlin–Heidelberg, 2001, 164–195 | DOI | Zbl

[13] E.W. Dijkstra, “Cooperating sequential processes”, Programming Languages, Academic Press, London, 1968, 43–112

[14] E.V. Larkin, A.N. Ivutin, ““Concurrency” in M-L-Parallel Semi-Markov Process”, MATEC Web Conf., 108 (2017), 05003 | DOI

[15] R.B. Myerson, Game theory: analysis of conflict, Harvard University Press, Cambridge–London, 1997, 568 pp. | MR

[16] K. Chatterjee, M. Jurdziński, T. Henzinger, “Simple stochastic parity games”, Computer Science Logic, CS Lecture Notes in Computer Science, 2803, Springer, Berlin–Heidelberg, 2003, 100–113 | DOI | MR | Zbl

[17] M.S. Squillante, “Stochastic Analysis and optimization of multiserver systems”, Run-time Models for Self-managing Systems and Applications. Autonomic Systems, Springer, Basel, 2010, 1–25 | DOI