Algorithm to adjust fuzzy inference system of Mamdani type
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 3, pp. 19-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algorithm to adjust the Mamdani-type systems is given; it uses the principle of a proportional-integral controller with a limited integral component to adjust fuzzy inference rules. To reduce the adjustment time in comparison with proportional controller and to reduce the overshoot amount in comparison with the proportional-integral controller with the same values of the coefficients of the integral and proportional components, the integral component limitation is used. The advantage of the developed algorithm is in the possibility of performing a local adjustment without a complete set of data for the domain of definition of input variables and the corresponding response values of the system. As a priority area for further research adaption of the application of the algorithms to the membership functions of other types (non-Gaussian) is considered. The efficiency of the algorithm is confirmed by the results of its comparison with algorithms of fuzzy inference system adjustment based on fuzzy neural networks and fuzzy clustering in solving identical problems.
Keywords: fuzzy inference systems, adaptive systems, Mamdani-type systems, intelligent systems, fuzzy logic, functions of membership, proportional-integral controller.
@article{VYURM_2018_10_3_a2,
     author = {M. S. Golosovskiy and A. V. Bogomolov and D. S. Terebov and E. V. Evtushenko},
     title = {Algorithm to adjust fuzzy inference system of {Mamdani} type},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {19--29},
     year = {2018},
     volume = {10},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a2/}
}
TY  - JOUR
AU  - M. S. Golosovskiy
AU  - A. V. Bogomolov
AU  - D. S. Terebov
AU  - E. V. Evtushenko
TI  - Algorithm to adjust fuzzy inference system of Mamdani type
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2018
SP  - 19
EP  - 29
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a2/
LA  - ru
ID  - VYURM_2018_10_3_a2
ER  - 
%0 Journal Article
%A M. S. Golosovskiy
%A A. V. Bogomolov
%A D. S. Terebov
%A E. V. Evtushenko
%T Algorithm to adjust fuzzy inference system of Mamdani type
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2018
%P 19-29
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a2/
%G ru
%F VYURM_2018_10_3_a2
M. S. Golosovskiy; A. V. Bogomolov; D. S. Terebov; E. V. Evtushenko. Algorithm to adjust fuzzy inference system of Mamdani type. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 3, pp. 19-29. http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a2/

[1] B. Kosko, “Fuzzy systems as universal aproximators”, IEEE Transactions on computers, 43:11 (1994), 1329–1333 | DOI | Zbl

[2] J.S.R. Jang, “ANFIS: Adaptive network based fuzzy inference systems”, IEEE Transactions on Systems, Man, and Cybernetics, 23:3 (1993), 665–685 | DOI

[3] F. Manentia, F. Rossia, A. Goryunov et al., “Fuzzy adaptive control system of a non-stationary plant with closed-loop passive identifier”, Resource-Efficient Technologies, 1:1 (2015), 10–18 | DOI

[4] Paklin N. B., Adaptive models of fuzzy inference for identification of nonlinear dependencies in complex systems, The abstract of thesis Cand. Sc. (Engineering), Izhevsk, 2004, 19 pp. (in Russ.)

[5] Pegat A., Fuzzy modeling and control, BINOM, Laboratoriya znaniy Publ., 2013, 798 pp. (in Russ.)

[6] Borisov V. V., Kruglov V. V., Fedulov A. S., Fuzzy models and networks, Goryachaya liniya-Telekom Publ., M., 2007, 284 pp. (in Russ.)

[7] O. Driankov, N. Hellendoorn, M. Reinfrank, An introduction to fuzzy control, Springer-Verlag, Berlin–Heidelberg, 1993, 316 pp. | DOI | Zbl

[8] J.M. Garibaldi, E.C. Ifeachor, “Application of simulated annealing fuzzy model tuning to umbilical cord acid-base interpretation”, IEEE Transactions on Fuzzy Systems, 7:1 (1999), 72–84 | DOI

[9] E.H. Mamdani, S. Assilian, “An Experiment in Linguistic Synthesis with Fuzzy Logic Controller”, International Journal Man-Machine Studies, 7:1 (1975), 1–13 | DOI | Zbl

[10] Kudinov Yu. I., Kelina A. Yu., “Methods of Synthesis and Tuning of Fuzzy PID Mamdani Regulators”, Informatsionnye tekhnologii, 2012, no. 6, supplement, 32 pp. (in Russ.)

[11] Vassilyev S. N., Kudinov Y. I., Pashchenko F. F., Durgaryan I. S., Kelina A. Yu., Kudinov I. Yu., Pashchenko A. F., “Intelligent Control Systems and Fuzzy Controllers. Part 2. Trained Fuzzy Controllers, Fuzzy PID Controllers”, Sensors Systems, 2017, no. 2 (211), 3–12 (in Russ.)

[12] Khomonenko A. D., Logashev S. V., Krasnov S. A., “Automatic Categorization of Documents Using Latent Semantic Analysis and Fuzzy Inference Algorithm of Mamdani”, Tr. SPIIRAN, 2016, no. 44, 5–19 (in Russ.) | DOI

[13] S.G. Cao, N.W. Rees, G. Feng, “Mamdani-type fuzzy controllers are universal fuzzy controllers”, Fuzzy Sets and Systems, 123:3 (2001), 359–367 | DOI | MR | Zbl

[14] E. Hennebach, W. Dilger, “Algebraic operations on a class of Mamdani-controllers”, Fuzzy Sets and Systems, 101:2 (1999), 253–259 | DOI | MR | Zbl

[15] Soldatova O. P., Lyozin I. A., “Research of Classification Tasks Solving Using Neural Fuzzy Production Based Network Models of Mamdani-Zadeh”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 2014, no. 2 (35), 136–148 | DOI