On the generalized boundary-value problem for linear Sobolev type equations on the geometric graph
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 3, pp. 5-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the geometric graph, where in addition to the continuity conditions and balance flow, condition of immobility is first introduced into the vertices of the graph, which is converted to a Dirichlet condition when the graph has one edge with two vertices. To solve this problem we first consider the corresponding Sturm–Liouville problem, and the results are then used to solve the Cauchy problem for two linear models, defined on the graph: Hoff equation and Barenblatt–Zheltov–Kochina equation. A feature of the work is the fact that on each edge of the graph given by the equation with different coefficients, which coupled with the introduction of vertices, is fixed for the first time in this problem. Both models relate to Sobolev type equations, the study of which is experiencing an era of its heyday. Reduction of these equations to an abstract Sobolev type equation makes it possible to apply the method of degenerate semigroups of operators. The phase space of solutions is determined by the phase space method, which consists in reducing the singular equation to a regular equation defined on some subspace of the original space. The obtained results of theorems can be used in consideration of inverse problems, optimal control problems, the initial-end and multipoint problems, and also in consideration of stochastic equations for the models set in a geometric graph.
Keywords: Sobolev type models, phase space method.
Mots-clés : equations on graph
@article{VYURM_2018_10_3_a0,
     author = {A. A. Bayazitova},
     title = {On the generalized boundary-value problem for linear {Sobolev} type equations on the geometric graph},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--11},
     year = {2018},
     volume = {10},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a0/}
}
TY  - JOUR
AU  - A. A. Bayazitova
TI  - On the generalized boundary-value problem for linear Sobolev type equations on the geometric graph
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2018
SP  - 5
EP  - 11
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a0/
LA  - ru
ID  - VYURM_2018_10_3_a0
ER  - 
%0 Journal Article
%A A. A. Bayazitova
%T On the generalized boundary-value problem for linear Sobolev type equations on the geometric graph
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2018
%P 5-11
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a0/
%G ru
%F VYURM_2018_10_3_a0
A. A. Bayazitova. On the generalized boundary-value problem for linear Sobolev type equations on the geometric graph. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 3, pp. 5-11. http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a0/

[1] Barenblatt G. I., Zheltov Iu. P., Kochina I. N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]”, Journal of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303 | DOI | Zbl

[2] M. Hallaire, Proceedings of XXXVII Annual Meeting of the Highway Research Board, Highway Research Board Special Report No 40, 1958, 88–105

[3] P.J. Chen, M.E. Gurtin, “On a Theory of Heat Conduction Involving Two Temperatures”, Zeitschrift für angewandte Mathematik und Physik (ZAMP), 19:4 (1968), 614–627 | DOI | MR | Zbl

[4] N.J. Hoff, “Creep buckling”, The Aeronautical Quarterly, 7:1 (1956), 1–20

[5] Manakova N. A., Dyl'kov A. G., “Optimal control of the solutions of the initial-finish problem for the linear Hoff model”, Mathematical Notes, 94:1–2 (2013), 220–230 | DOI | DOI | MR | Zbl

[6] Sagadeeva M. A., Hasan F. L., “Bounded solutions of Barenblatt-Zheltov-Kochina model in quasi-Sobolev spaces”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software, 8:4 (2015), 138–144 (in Russ.) | DOI | Zbl

[7] Kadchenko S. I., Soldatova E. A., Zagrebina S. A., “Numerical research of the Barenblatt-Zheltov-Kochina stochastic model”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software, 9:2 (2016), 117–123 | DOI | MR | Zbl

[8] G.A. Sviridyuk, V.E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | DOI | MR | Zbl

[9] Bayazitova A. A., “The Showalter-Sidorov problem for the Hoff model on a geometric graph”, IIGU Ser. Matematika, 4:1 (2011), 2–8 (in Russ.) | Zbl