Mots-clés : equations on graph
@article{VYURM_2018_10_3_a0,
author = {A. A. Bayazitova},
title = {On the generalized boundary-value problem for linear {Sobolev} type equations on the geometric graph},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--11},
year = {2018},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a0/}
}
TY - JOUR AU - A. A. Bayazitova TI - On the generalized boundary-value problem for linear Sobolev type equations on the geometric graph JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 5 EP - 11 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a0/ LA - ru ID - VYURM_2018_10_3_a0 ER -
%0 Journal Article %A A. A. Bayazitova %T On the generalized boundary-value problem for linear Sobolev type equations on the geometric graph %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 5-11 %V 10 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a0/ %G ru %F VYURM_2018_10_3_a0
A. A. Bayazitova. On the generalized boundary-value problem for linear Sobolev type equations on the geometric graph. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 3, pp. 5-11. http://geodesic.mathdoc.fr/item/VYURM_2018_10_3_a0/
[1] Barenblatt G. I., Zheltov Iu. P., Kochina I. N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]”, Journal of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303 | DOI | Zbl
[2] M. Hallaire, Proceedings of XXXVII Annual Meeting of the Highway Research Board, Highway Research Board Special Report No 40, 1958, 88–105
[3] P.J. Chen, M.E. Gurtin, “On a Theory of Heat Conduction Involving Two Temperatures”, Zeitschrift für angewandte Mathematik und Physik (ZAMP), 19:4 (1968), 614–627 | DOI | MR | Zbl
[4] N.J. Hoff, “Creep buckling”, The Aeronautical Quarterly, 7:1 (1956), 1–20
[5] Manakova N. A., Dyl'kov A. G., “Optimal control of the solutions of the initial-finish problem for the linear Hoff model”, Mathematical Notes, 94:1–2 (2013), 220–230 | DOI | DOI | MR | Zbl
[6] Sagadeeva M. A., Hasan F. L., “Bounded solutions of Barenblatt-Zheltov-Kochina model in quasi-Sobolev spaces”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software, 8:4 (2015), 138–144 (in Russ.) | DOI | Zbl
[7] Kadchenko S. I., Soldatova E. A., Zagrebina S. A., “Numerical research of the Barenblatt-Zheltov-Kochina stochastic model”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software, 9:2 (2016), 117–123 | DOI | MR | Zbl
[8] G.A. Sviridyuk, V.E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | DOI | MR | Zbl
[9] Bayazitova A. A., “The Showalter-Sidorov problem for the Hoff model on a geometric graph”, IIGU Ser. Matematika, 4:1 (2011), 2–8 (in Russ.) | Zbl