Mots-clés : Planck's constant, Debye approximation
@article{VYURM_2018_10_2_a5,
author = {Yu. M. Kovalev},
title = {Determining the expression for isobaric coefficient of volume expansion for some molecular crystals of nitro compounds},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {57--67},
year = {2018},
volume = {10},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a5/}
}
TY - JOUR AU - Yu. M. Kovalev TI - Determining the expression for isobaric coefficient of volume expansion for some molecular crystals of nitro compounds JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 57 EP - 67 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a5/ LA - ru ID - VYURM_2018_10_2_a5 ER -
%0 Journal Article %A Yu. M. Kovalev %T Determining the expression for isobaric coefficient of volume expansion for some molecular crystals of nitro compounds %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 57-67 %V 10 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a5/ %G ru %F VYURM_2018_10_2_a5
Yu. M. Kovalev. Determining the expression for isobaric coefficient of volume expansion for some molecular crystals of nitro compounds. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 2, pp. 57-67. http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a5/
[1] Fortov V. E., Equations of state of matter: from an ideal gas to a quark-gluon plasma, Fizmatlit Publ., M., 2013, 492 pp. (in Russ.)
[2] Khishchenko K. V., Fortov V. E., “Investigation of equations of state of materials at high concentration of energy”, Proceeding of the Kabardino-Balkarian State University, IV:1 (2014), 6–16 (in Russ.)
[3] Kuropatenko V. F., Models of Continuum Mechanics, Izd-vo ChelGU Publ., Chelyabinsk, 2007, 302 pp. (in Russ.)
[4] Kovalev Yu.M., Kovaleva E. A., “A Mathematical Study of the Conservation Equation for Two-Phase Mixtures”, Bulletin of the South Ural State University, Series “Mathematical Modelling, Programming Computer Software”, 7:2 (2014), 29–37 | DOI
[5] Bushman A. V., Fortov V. E., “Model equations of state”, Sov. Phys. Usp., 26 (1983), 465–496 | DOI | DOI
[6] Kitaygorodskiy A. I., Molecular Crystals, Nauka Publ., M., 1971, 424 pp. (in Russ.)
[7] Zharkov V. N., Kalinin V. A., Equations of state of solids at high pressures and temperatures, Nauka Publ., M., 1968, 311 pp. (in Russ.)
[8] Zhirifal'ko L., Statistical Solid State Physics, Mir Publ., M., 1975, 382 pp. (in Russ.)
[9] Bazarov I. P., Thermodynamics, Vysshaya shkola Publ., M., 1991, 375 pp. (in Russ.)
[10] Zel'dovich Ya.B., Rayzer Yu.P., Physics of shock waves and high-temperature hydrodynamic phenomena, Fizmatlit Publ., M., 2008, 652 pp. (in Russ.)
[11] Kovalev Yu.M., Fizika goreniya i vzryva, 20:2 (1984), 102–107 (in Russ.)
[12] Voskoboynikov I. M., Afanasenkov A. N., Bogomolov V. M., Fizika goreniya i vzryva, 3:4 (1967), 585–593 (in Russ.)
[13] P.J. Miller, S. Block, G.J. Piermarini, “Effect of Pressure on the Vibration Spectra of Liquid Nitromethane”, J. of Physical Chemistry, 93 (1989), 462–466 | DOI
[14] Khishchenko K. V., Lomonosov I. V., Fortov V. E., Shlenskiy O. F., Doklady Akademii nauk, 349:3 (1996), 322–325 (in Russ.)
[15] Landau L. D., Lifshits E. M., Statistical physics, v. I, Nauka Publ., M., 1976, 584 pp. (in Russ.)
[16] Kovalev Yu.M., “Determination of Form of the Gruneisen Coefficient for Molecular Crystals”, Doklady Akademii nauk, 403:4 (2005), 475–477 (in Russ.) | MR | Zbl
[17] Kovalev Yu.M., Voprosy atomnoy nauki i tekhniki. Seriya: Matematicheskoe modelirovanie fizicheskikh protsessov, 2005, no. 2, 55–59 (in Russ.)
[18] Molodets A. M., “Gruneisen function and the zero-temperature isotherm of three metals up to pressures of 10 TPa”, JETP, 80:3, 467–471
[19] Molodets A. M., Doklady Akademii nauk, 341:6 (1995), 753–754 (in Russ.)
[20] Shchetinin V. G., Khimicheskaya fizika, 18:5 (1999), 90–95 (in Russ.) | Zbl
[21] Kovalev Yu.M., Kuropatenko V. F., Inzhenerno-fizicheskiy zhurnal, 91:2 (2018), 297–306 (in Russ.)
[22] B.M. Dobrats, P.C. Crawford, LLNL Explosives Handbook. Properties of Chemical Explosives and Explosive Simulants, University of California, Livermore, California, 1985
[23] Stankevich A. V., Smirnov E. B., Kostitsyn O. V., Ten K. A., Shmakov A. N., Tolochko B. P., “Ispol'zovanie sinkhrotronnogo i teragertsovogo izlucheniya dlya issledovaniya vysokoenergeticheskikh materialov”, Proc. Using synchrotron and terahertz radiation to study high-energy materials, IYaF SO AN Publ., Novosibirsk, 2015, 46–49 (in Russ.)
[24] Olindzher B., Keydi G., “Shock compressibility of ten, TATB, CO$_2$ and H$_2$O at pressures up to 10 GPa, calculated on the basis of experimental data on hydrostatic compression”, Detonatsiya i vzryvchatye veshchestva, Mir Publ., M., 1981, 203–219 (in Russ.)
[25] Kovalev Yu.M., “Mathematical Modelling of the Thermal Component of the Equation of State of Molecular Crystals”, Bulletin of the South Ural State University, Series “Mathematical Modelling, Programming Computer Software”, 6:1 (2013), 34–42 (in Russ.)
[26] Klark T., Computer chemistry, Mir Publ., M., 1990, 381 pp. (in Russ.)
[27] Stepanov N. F., Novakovskaya Yu.V., Rossiyskiy Khimicheskiy Zhurnal, LI:5 (2007), 5–17 (in Russ.)
[28] T.R. Gibbs, A. Popolato, Last explosive property data. Los Alamos series on dynamic material properties, University of California Press, Berkeley–Los Angeles–London, 1980