Mots-clés : nodal point
@article{VYURM_2018_10_2_a4,
author = {A. N. Tyrsin and A. A. Azaryan},
title = {Exact evaluation of linear regression models by the least absolute deviations method based on the descent through the nodal straight lines},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {47--56},
year = {2018},
volume = {10},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a4/}
}
TY - JOUR AU - A. N. Tyrsin AU - A. A. Azaryan TI - Exact evaluation of linear regression models by the least absolute deviations method based on the descent through the nodal straight lines JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 47 EP - 56 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a4/ LA - ru ID - VYURM_2018_10_2_a4 ER -
%0 Journal Article %A A. N. Tyrsin %A A. A. Azaryan %T Exact evaluation of linear regression models by the least absolute deviations method based on the descent through the nodal straight lines %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 47-56 %V 10 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a4/ %G ru %F VYURM_2018_10_2_a4
A. N. Tyrsin; A. A. Azaryan. Exact evaluation of linear regression models by the least absolute deviations method based on the descent through the nodal straight lines. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 2, pp. 47-56. http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a4/
[1] Kendel M. D., St'yuart A., Statistical Inferences and Relationships, Nauka Publ., M., 1973, 899 pp. (in Russ.)
[2] Korolyuk V. S., Portenko N. I., Skorokhod A. V., Turbin A. F., A Handbook on Probability Theory and Mathematical Statistics, Nauka Publ., M., 1985, 640 pp. (in Russ.)
[3] Demidenko E. Z., Linear and nonlinear regression, Finansy i statistika Publ., M., 1981, 302 pp. (in Russ.)
[4] Ayvazyan S. A., Enyukov I. S., Meshalkin L. D., Applied statistics: Dependency Studies, Finansy i statistika Publ., M., 1985, 487 pp. (in Russ.)
[5] P. Bloomfield, W.L. Steiger, Least absolute seviations: theory, applications, and algorithms, Birkhauser, Boston–Basel–Stuttgart, 1983, 349 pp. | MR
[6] Mudrov V. I., Kushko V. L., Measurement processing methods: quasi-truth estimates, Radio i svyaz' Publ., M., 1983, 304 pp. (in Russ.)
[7] E. Weiszfeld, “On the point for which the sum of the distances to n given points is minimum”, Annals of Operations Research, 167:1 (2009), 7–41 | DOI | MR | Zbl
[8] Akimov P. A., Matasov A. I., “Levels of nonoptimality of the Weiszfeld Algorithm in the leastmodules method”, Automation and Remote Control, 71:2 (2010), 172–184 | DOI | MR | Zbl
[9] Tyrsin A. N., Maksimov K. E., “Estimation of the Linear Regression Equations Using the Least Modules Method”, Zavodskaya laboratoriya. Diagnostika materialov, 78:7 (2012), 65–71 (in Russ.)
[10] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge University Press, Cambridge, 2004, 730 pp. | DOI | MR | Zbl
[11] Zukhovitskiy S. I., Avdeeva L. I., Linear and convex programming, Nauka Publ., M., 1967, 460 pp. (in Russ.)
[12] Panyukov A. V., Gorbik V. V., “Using massively parallel computations for absolutely precise solution of the linear programming problems”, Automation and Remote Control, 73:2 (2012), 276–290 | DOI | MR | Zbl
[13] Rokafellar R., Convex analysis, Mir Publ., M., 1973, 469 pp. (in Russ.)
[14] Mikhaylov G. A., Voytishek A. V., Numerical statistical modeling. Monte Carlo methods, Akademiya Publ., M., 2006, 368 pp. (in Russ.)
[15] Kormen T. Kh., Leyzerson Ch., Rivest R., Shtayn K., Algorithms: construction and analysis, Vil'yams Publ., M., 2013, 1323 pp. (in Russ.)