Mots-clés : parabolic equation
@article{VYURM_2018_10_2_a3,
author = {S. G. Pyatkov and M. A. Verzhbitskii},
title = {Inverse problems of recovering the boundary data with integral overdetermination conditions},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {37--46},
year = {2018},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a3/}
}
TY - JOUR AU - S. G. Pyatkov AU - M. A. Verzhbitskii TI - Inverse problems of recovering the boundary data with integral overdetermination conditions JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 37 EP - 46 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a3/ LA - en ID - VYURM_2018_10_2_a3 ER -
%0 Journal Article %A S. G. Pyatkov %A M. A. Verzhbitskii %T Inverse problems of recovering the boundary data with integral overdetermination conditions %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 37-46 %V 10 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a3/ %G en %F VYURM_2018_10_2_a3
S. G. Pyatkov; M. A. Verzhbitskii. Inverse problems of recovering the boundary data with integral overdetermination conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 2, pp. 37-46. http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a3/
[1] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 18, North-Holland Publishing, Amsterdam, 1978, 528 pp. | MR | Zbl
[2] Alifanov O. M., Artyukhin E. A., Nenarokomov A. V., Obratnye zadachi v issledovanii slozhnogo teploobmena, Yanus-K Publ., M., 2009, 299 pp. (in Russ.)
[3] M.N. Ozisik, H.A.B. Orlando, Inverse heat transfer, Taylor Francis, New-York, 2000, 352 pp. | MR
[4] Kostin A. B., Prilepko A. I., “On some problems of recovering a boundary condition for a parabolic equation, I”, Differ. Equations, 32:1 (1996), 113–122 (in Russ.) | MR | Zbl
[5] Borukhov V. T., Korzyuk V. I., “Application of nonclassical boundary value problems for recovering boundary regimes of transfer processes”, Bulletin of Belarussian University. Ser. 1, 1998, no. 3, 54–57 (in Russ.)
[6] Tryanin A. P., “Determination of heat-transfer coefficients at the inlet into a porous body and inside it by solving the inverse problem”, Journal of engineering physics, 52:3 (1987), 346–351 | DOI
[7] Borukhov V. T., Vabishchevich P. N., Korzyuk V. I., “Reduction of a class of inverse heatconduction problems to direct initial/boundary-value problems”, Journal of Engineering Physics and Thermophysics, 73:4 (2000), 730–734 | DOI
[8] Korotkii A. I., Kovtunov D. A., “Reconstruction of boundary regimes in an inverse heat convection problem for an incompressible fluid”, Tr. IMM DVO AN, 12:2 (2006), 88–97 (in Russ.)
[9] Abylkairov U. U., “Obratnaya zadacha integral'nogo nablyudeniya dlya obshchego parabolicheskogo uravneniya”, Matematicheskiy zhurnal, 3:4(10) (2003), 5–12 (in Russ.)
[10] Abylkairov U. U., Abiev A. A., Aitzhanov S. E., “Inverse problem for the system of thermal convection”, Proc. International Youth Scientific School-Conference “Theory and numerical methods for solving inverse and ill-posed problems”, IM SB RAS Publ., Novosibirsk, 2009, 10–11 (in Russ.)
[11] Kozhanov A. I., “Linear inverse problems for some lasses of nonstationary equations”, Proc. VI International scientific school-conference for young scientists “Theory and numerical methods for solving inverse and ill-posed problem”, 2015, 264–275 (in Russ.) | DOI
[12] A.D. Iskenderov, A.Ya. Akhundov, “Inverse problem for a linear system of parabolic equations”, Doklady Mathematics, 79:1 (2009), 73–75 | DOI | MR | Zbl
[13] M.I. Ismailov, F. Kanca, “Inverse problem of finding the time-dependent coefficient of heat equation from integral overdetermination condition data”, Inverse Problems in Science and Engineering, 20:24 (2012), 463–476 | DOI | MR | Zbl
[14] J. Li, Y. Xu, “An inverse coefficient problem with nonlinear parabolic equation”, J. Appl. Math. Comput., 34 (2010), 195–206 | DOI | MR | Zbl
[15] N.B. Kerimov, M.I. Ismailov, “An inverse coefficient problem for the heat equation in the case of nonlocal boundary conditions”, J. of Mathematical Analysis and Applications, 396:2 (2012), 546–554 | DOI | MR | Zbl
[16] A.I. Kozhanov, “Parabolic equations with unknown time-dependent coefficients”, Comput. Math. and Math. Phys., 57:6 (2017), 956–966 | DOI | MR | Zbl
[17] Pyatkov S. G., Safonov E. I., “Determination of the Source Function in the Mathematical Models of Convection-Diffusion”, Mathematical notes of NEFU, 21:2 (2014), 117–130 (in Russ.)
[18] Kriksin Yu.A., Plushchev S. N., Samarskaya E. A., Tishkin V. F., “The inverse problem of source reconstruction for convective diffusion equation”, Matem. Mod., 7:11 (1995), 95–108 (in Russ.) | Zbl
[19] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for solving inverse problems in Mathematical Physics, Marcel Dekker, Inc., New-York, 1999, 744 pp. | DOI | MR
[20] M. Ivancho, Inverse problems for equations of parabolic type, Mathematical Studies Monograph Series, 10, VNTL Publishers, Lviv, 2003, 238 pp. | MR | Zbl
[21] Verzhbitskii M. A., Pyatkov S. G., “On Some Inverse Problems of Determining Boundary Regimes”, Mathematical notes of NEFU, 23:2 (2016), 3–16 (in Russ.)
[22] O.A. Ladyženskaja, V.A. Solonnikov, N.N. Uralceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, R.I., 1968, 648 pp. | DOI | MR
[23] R. Denk, M. Hieber, J. Prüss, “Optimal $L_p$-$L_q$-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Z., 257:1 (2007), 193–224 | DOI | MR | Zbl