@article{VYURM_2018_10_2_a0,
author = {V. I. Zhukovskiy and K. N. Kudryavtsev and S. P. Samsonov and M. I. Vysokos and Yu. A. Belskih},
title = {Class of differential games with no {Nash} equilibrium, but with equilibrium of objections and counterobjections},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--21},
year = {2018},
volume = {10},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a0/}
}
TY - JOUR AU - V. I. Zhukovskiy AU - K. N. Kudryavtsev AU - S. P. Samsonov AU - M. I. Vysokos AU - Yu. A. Belskih TI - Class of differential games with no Nash equilibrium, but with equilibrium of objections and counterobjections JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 5 EP - 21 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a0/ LA - ru ID - VYURM_2018_10_2_a0 ER -
%0 Journal Article %A V. I. Zhukovskiy %A K. N. Kudryavtsev %A S. P. Samsonov %A M. I. Vysokos %A Yu. A. Belskih %T Class of differential games with no Nash equilibrium, but with equilibrium of objections and counterobjections %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 5-21 %V 10 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a0/ %G ru %F VYURM_2018_10_2_a0
V. I. Zhukovskiy; K. N. Kudryavtsev; S. P. Samsonov; M. I. Vysokos; Yu. A. Belskih. Class of differential games with no Nash equilibrium, but with equilibrium of objections and counterobjections. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 2, pp. 5-21. http://geodesic.mathdoc.fr/item/VYURM_2018_10_2_a0/
[1] Owen G., Game theory, Academic Press, New York, 1995, 447 pp. | MR | Zbl
[2] Zhukovskiy V. I., Tynyanskiy N. T., Equilibrium control of multicriteria dynamic problems, Izdatel'stvo MGU Publ., M., 1984, 224 pp. (in Russ.)
[3] Vaisbord E. M., “Coalition differential games”, Differ. Uravn., 10:4 (1974), 613–623 (in Russ.) | Zbl
[4] Vaisbord E. M., Zhukovskii V. I., Introduction to Multi Player Differential Game and Their Application, Gordon and Breach, New York etc., 1988, 581 pp. | MR
[5] V.I. Zhukovskii, M.E. Salukvadze, The Vector-Valued Maximin, Academic Press, N.Y. etc., 1994, 404 pp. | DOI | MR
[6] Vilkas E. I., “Formalization of the problem of choosing a game-theoretic criterion of optimality”, Mathematical Methods in Social Sciences, 2, Institut matematiki i kibernetiki AN Lit. SSR Publ., Vil'nyus, 1972, 9–55 (in Russ.) | MR
[7] Vilkas E. I., Mayminas E. Z., Solutions: theory, information, modeling, Radio i svyaz' Publ., M., 1981, 328 pp. (in Russ.)
[8] Smol'yakov E. R., Theory of Conflict Equilibria, URSS Publ., M., 2005, 301 pp. (in Russ.)
[9] Smol'yakov E. R., Generalized optimal control and dynamic conflict problems, MAKS Press Publ., M., 1983, 232 pp. (in Russ.)
[10] Smol'yakov E. R., Equilibrium models with non-coinciding interests of participants, Nauka Publ., M., 1986, 223 pp. (in Russ.)
[11] V.I. Zhukovskii, “Some Problems of Non-Antagonistic Differential Games”, Mathematical Method in Operation Research, Academy of Sciences, Bulgaria, Sofia, 1985, 103–195
[12] S.J. Biltchev, “$\epsilon$-$Z$-Equilibrium in a Differential Game Described by a Parabolic System”, Many Players Differential Game, Technical Univ., Bulgaria, Rousse, 1984, 47–52
[13] St. A. Tersian, “On the Z-Equilibrium Points in a Differential Game”, Many Players Differential Game, Technical Univ., Bulgaria, Rousse, 1984, 106–111
[14] S.D. Gaidov, “Z-Equilibrium in Stochastic Differential Game”, Many Players Differential Game, Technical Univ., Bulgaria, Rousse, 1984, 53–63 | MR
[15] P.I. Rashkov, “Sufficient Conditions for Z-Equilibrium in a Differential Game in Banach Spase”, Many Players Differential Game, Technical Univ., Bulgaria, Rousse, 1984, 91–99
[16] D.T. Dochev, N.V. Stojanov, “Existence of Z-Equilibrium in a Differential Game with Delay”, Many Players Differential Game, Technical Univ., Bulgaria, Rousse, 1984, 64–72
[17] Zhukovskiy V. I., Introduction to differential games under uncertainty. The equilibrium of objections and counterobjections, KRASAND Publ., M., 2010, 192 pp. (in Russ.)
[18] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, New York, 1988, 517 pp. | MR | Zbl
[19] Gantmakher F. R., Theory of matrices, Fizmatlit Publ., M., 2004, 560 pp. (in Russ.)
[20] Zhukovskiy V. I., Chikriy A. A., Differential equations. Linear-quadratic differential games, Yurayt Publ., M., 2017, 322 pp. (in Russ.)
[21] Zhukovskiy V. I., Gorbatov A. S., Kudryavtsev K. N., “Berge and Nash equilibrium in a linear-quadratic differential game”, Mat. Teor. Igr Pril., 9:1 (2017), 62–94 (in Russ.) | Zbl
[22] Voevodin V. V., Kuznetsov Yu. A., Matrices and calculations, Nauka Publ., M., 1984, 320 pp. (in Russ.)
[23] V.I. Zhukovskiy, K.N. Kudryavtsev, “Coalition equilibrium in a three-person game”, 2017 Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA) (St. Petersburg, 22–27 May 2017), 1–4 | DOI | Zbl