Population kinetics of localized states in nanocomposite materials under exposure to radiation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 1, pp. 62-71
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We simulated the population of localized states in nanocomposite materials using Rouse-Fowler model. The following radiation effects were considered: prolonged irradiation (over 3 s) with the low absorbed dose rate (0,002 W/kg) and pulsed irradiation (100 ns) with the high absorbed dose rate (over 105 W/kg) of ionizing radiation. We investigated the role of localized states in electrical conductive properties of nanocomposite materials on the example of nanocomposite materials with hole conductivity (polymathimethacrilate (PMMA) + CdS) and electron conductivity ($\alpha$-Al$_2$O$_3$+SrO), as well as in pure PMMA and $\alpha$-Al$_2$O$_3$. Our results indicate that the small traps influence the speed of relaxation to the equilibrium radiation induced electrical conductivity, while the deep traps, the depth of which is much greater than $kT$, have an impact on the sensitivity to an absorbed dose of ionizing radiation. Moreover, pure PMMA and nanocomposite materials based on it are unsuitable for dosimetry due to a large share of the small traps in the spectrum of intrinsic localized states. On the contrary, aluminum oxide is an almost perfect material for the accumulation of the information about the ionizing radiation, since its spectrum of localized states includes only deep traps. On the whole, the most interesting materials from the dosimetry viewpoint are nanocomposites based on aluminum oxide, where the concentration of impurity centers does not exceed the concentration of intrinsic states, and the nanoparticle radius is no more than 2 nm in case of small share of the small traps in impurity spectrum.
Keywords: nanocomposite material, localized state, localized center, radiation induced electrical conductivity, Rouse–Fowler, dosimetry, polymathilmethacrilte (PMMA), CdS, corundum, SrO.
Mots-clés : trap, $\alpha$-Al$_2$O$_3$
@article{VYURM_2018_10_1_a8,
     author = {N. S. Dyuryagina and A. P. Yalovets},
     title = {Population kinetics of localized states in nanocomposite materials under exposure to radiation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {62--71},
     year = {2018},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a8/}
}
TY  - JOUR
AU  - N. S. Dyuryagina
AU  - A. P. Yalovets
TI  - Population kinetics of localized states in nanocomposite materials under exposure to radiation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2018
SP  - 62
EP  - 71
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a8/
LA  - en
ID  - VYURM_2018_10_1_a8
ER  - 
%0 Journal Article
%A N. S. Dyuryagina
%A A. P. Yalovets
%T Population kinetics of localized states in nanocomposite materials under exposure to radiation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2018
%P 62-71
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a8/
%G en
%F VYURM_2018_10_1_a8
N. S. Dyuryagina; A. P. Yalovets. Population kinetics of localized states in nanocomposite materials under exposure to radiation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 1, pp. 62-71. http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a8/

[1] V.K. Popov, V.N. Bagratashvili, L.I. Krotova et al., “A route to diffusion embedding of CdSe/CdS quantum dots in fluoropolymer microparticles”, Green Chemistry, 13:10 (2011), 2696–2700 | DOI

[2] N. Tomczak, D. Janczewski, M. Han, G.J. Vancso, “Designer polymer-quantum dot architectures”, Progress in Polymer Science, 34 (2009), 393–430 | DOI

[3] Vannikov A. V., Matveev V. K., Sichkar' V.K., Tyutnev A. P., Radiation effects in polymers. Electrical properties, Nauka Publ., M., 1982, 273 pp. (in Russ.)

[4] Kortov V. S., Milman I. I., Nikiforov S. V., Bulletin of the Tomsk Polytechnic University, 303 (2000), 35–45 (in Russ.) | Zbl

[5] Milman I. I., Kortov V. S., Kirpa V. I., Physics of the Solid State, 37:4 (1995), 1149–1159 (in Russ.)

[6] Nikiforov S. V., Kortov V. S., Kazantseva M. G., “Simulation of the superlinearity of dose characteristics of thermoluminescence of anion-defective aluminum oxide”, Physics of the Solid State, 56:3 (2014), 554–560 | DOI | MR

[7] Nikiforov S. V., Kortov V. S., “Simulation of sublinear dose dependence of thermoluminescence with the inclusion of the competitive interaction of trapping centers”, Physics of the Solid State, 56:10 (2014), 2064–2068 | DOI

[8] Shamilov R. R., Galyametdinov Yu. G., Bulletin of the Technological University, 16:15 (2013), 322–324 (in Russ.)

[9] (in Russ.)

[10] Tyutnev A. P., Vannikov A. V., Mingaleev G. S., Radiation electrophysics of organic dielectrics, Energoatomizdat Publ., M., 1989, 192 pp.

[11] Tyutnev A. P., Sadovnichii D. N., Boev S. G., High Energy Chemistry, 29:2 (1995), 115–119 (in Russ.)

[12] A.P. Tyutnev, V.S. Saenko, E.D. Pozhidaev, R. Ikhsanov, “Experimental and Theoretical Studies of Radiation-Induced Conductivity in Spacecraft Polymers”, IEEE transactions on plasma science, 43:9 (2015), 2915–2924 | DOI

[13] N.S. Dyuryagina, A.P. Yalovets, “Using Rouse-Fowler model to describe radiation-induced electrical conductivity of nanocomposite materials”, J. Phys.: Conf. Ser., 830:1 (2017), 12130–12136 | DOI

[14] Vaysberg S. E., Sichkar' V. P., Karpov V. L., Vysokomolekulyarnye soedineniya, (A)13:11 (1971), 2502–2507 (in Russ.)