Mots-clés : trap, $\alpha$-Al$_2$O$_3$
@article{VYURM_2018_10_1_a8,
author = {N. S. Dyuryagina and A. P. Yalovets},
title = {Population kinetics of localized states in nanocomposite materials under exposure to radiation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {62--71},
year = {2018},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a8/}
}
TY - JOUR AU - N. S. Dyuryagina AU - A. P. Yalovets TI - Population kinetics of localized states in nanocomposite materials under exposure to radiation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 62 EP - 71 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a8/ LA - en ID - VYURM_2018_10_1_a8 ER -
%0 Journal Article %A N. S. Dyuryagina %A A. P. Yalovets %T Population kinetics of localized states in nanocomposite materials under exposure to radiation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 62-71 %V 10 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a8/ %G en %F VYURM_2018_10_1_a8
N. S. Dyuryagina; A. P. Yalovets. Population kinetics of localized states in nanocomposite materials under exposure to radiation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 1, pp. 62-71. http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a8/
[1] V.K. Popov, V.N. Bagratashvili, L.I. Krotova et al., “A route to diffusion embedding of CdSe/CdS quantum dots in fluoropolymer microparticles”, Green Chemistry, 13:10 (2011), 2696–2700 | DOI
[2] N. Tomczak, D. Janczewski, M. Han, G.J. Vancso, “Designer polymer-quantum dot architectures”, Progress in Polymer Science, 34 (2009), 393–430 | DOI
[3] Vannikov A. V., Matveev V. K., Sichkar' V.K., Tyutnev A. P., Radiation effects in polymers. Electrical properties, Nauka Publ., M., 1982, 273 pp. (in Russ.)
[4] Kortov V. S., Milman I. I., Nikiforov S. V., Bulletin of the Tomsk Polytechnic University, 303 (2000), 35–45 (in Russ.) | Zbl
[5] Milman I. I., Kortov V. S., Kirpa V. I., Physics of the Solid State, 37:4 (1995), 1149–1159 (in Russ.)
[6] Nikiforov S. V., Kortov V. S., Kazantseva M. G., “Simulation of the superlinearity of dose characteristics of thermoluminescence of anion-defective aluminum oxide”, Physics of the Solid State, 56:3 (2014), 554–560 | DOI | MR
[7] Nikiforov S. V., Kortov V. S., “Simulation of sublinear dose dependence of thermoluminescence with the inclusion of the competitive interaction of trapping centers”, Physics of the Solid State, 56:10 (2014), 2064–2068 | DOI
[8] Shamilov R. R., Galyametdinov Yu. G., Bulletin of the Technological University, 16:15 (2013), 322–324 (in Russ.)
[9] (in Russ.)
[10] Tyutnev A. P., Vannikov A. V., Mingaleev G. S., Radiation electrophysics of organic dielectrics, Energoatomizdat Publ., M., 1989, 192 pp.
[11] Tyutnev A. P., Sadovnichii D. N., Boev S. G., High Energy Chemistry, 29:2 (1995), 115–119 (in Russ.)
[12] A.P. Tyutnev, V.S. Saenko, E.D. Pozhidaev, R. Ikhsanov, “Experimental and Theoretical Studies of Radiation-Induced Conductivity in Spacecraft Polymers”, IEEE transactions on plasma science, 43:9 (2015), 2915–2924 | DOI
[13] N.S. Dyuryagina, A.P. Yalovets, “Using Rouse-Fowler model to describe radiation-induced electrical conductivity of nanocomposite materials”, J. Phys.: Conf. Ser., 830:1 (2017), 12130–12136 | DOI
[14] Vaysberg S. E., Sichkar' V. P., Karpov V. L., Vysokomolekulyarnye soedineniya, (A)13:11 (1971), 2502–2507 (in Russ.)