Selecting parameters of digital filters during spectrophotometric research
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 1, pp. 52-57
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In various fields of knowledge when studying changing processes, the response received by a physical instrument allows to nominally divide the analyzed signal into two components: “useful” signal and “disturbances” signal. In particular, while solving tasks on qualitative and quantitative spectrophotometric analysis there occur problems with distortion of absorption bands by disturbances of various natures: presence of uncompensated atmosphere absorption spectra, influence of spectra of molecules adsorbed on a sample’s surface, presence of interference noise in thin and multi-layer objects. This paper provides a comparative analysis of the influence of filtration of model absorption spectrum by median filter and Savitzky–Golay filters of zero-first order (SG0), second-third order (SG2), and fourth-fifth order (SG4). The model spectrum was described by Gauss and Lorentz absorption contours. Based on the results of the numerical experiment recommendations are given on optimal filtration of experimental absorption spectra of condensed mediums for their further analysis and processing: for complete suppression of “disturbances” absorption bands the use of median filter is preferable, while for Gauss contour the filter bandwidth should be 5 times bigger than the full width at the half height of the suppressed absorption band, and for Lorentz contour this ratio should exceed 20; changing of the relative intensity of the “useful” signal absorption band by less than 1 % is fulfilled at a certain relative bandwidth. In case of Gauss absorption band the relative bandwidth for median filter should not exceed 0,2, for filters SG0 — 0,2, SG2 — 0,9, SG4 — 1,6. For Lorentz contour this ratio should for median filter not exceed 0,2, for filters SG0 — 0,2, SG2 — 0,7, SG4 — 1,1.
Keywords: digital filtering, absorption line shape, signal processing, spectrophotometry, spectroscopy.
@article{VYURM_2018_10_1_a6,
     author = {A. N. Bekhterev and A. Yu. Lednov and N. A. Savinova},
     title = {Selecting parameters of digital filters during spectrophotometric research},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {52--57},
     year = {2018},
     volume = {10},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a6/}
}
TY  - JOUR
AU  - A. N. Bekhterev
AU  - A. Yu. Lednov
AU  - N. A. Savinova
TI  - Selecting parameters of digital filters during spectrophotometric research
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2018
SP  - 52
EP  - 57
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a6/
LA  - ru
ID  - VYURM_2018_10_1_a6
ER  - 
%0 Journal Article
%A A. N. Bekhterev
%A A. Yu. Lednov
%A N. A. Savinova
%T Selecting parameters of digital filters during spectrophotometric research
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2018
%P 52-57
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a6/
%G ru
%F VYURM_2018_10_1_a6
A. N. Bekhterev; A. Yu. Lednov; N. A. Savinova. Selecting parameters of digital filters during spectrophotometric research. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 1, pp. 52-57. http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a6/

[1] A.N. Bekhterev, V.M. Zolotarev, “A study of vibrational states in condensed carbon-based media”, Optics and spectroscopy, 101:6 (2006), 877–881 | DOI

[2] V.M. Zolotarev, A.N. Bekhterev, “Optical researches of structural organization of axisymmetrical polycrystalline fibers”, ICO20: Biomedical Optics, Proc. SPIE, 6026, 2006, 60260–60268 | DOI

[3] T.M. James, M. Schlösser, R.J. Lewis et al., “Automated quantitative spectroscopic analysis combining background subtraction, cosmic ray removal, and peak fitting”, Appl. Spectrosc., 67 (2013), 949–959 | DOI

[4] A. Felinger, Data analysis and signal processing in chromatography, Elsevier Science B. V., 1998, 413 pp.

[5] X. Jiang, P.J. Scott, D.J. Whitehouse, L. Blunt, “Paradigm shifts in surface metrology. Part II. The current shift”, Proc. R. Soc. A, 463 (2007), 2071–2099 | DOI

[6] A.M. Savitzky, J.E. Golay, “Smoothing and differentiation of data by simplified least squares procedures”, Analytical Chemistry, 36:8 (1964), 1627–1639 | DOI

[7] C.G. Enke, T.A. Nieman, “Signal-to-noise ratio enhancement by least-squares polynomial smoothing”, Analytical Chemistry, 48 (1976), 705a–712a | DOI

[8] H. Ziegler, “Properties of digital smoothing polynomial (DISPO) filters”, Appl. Spectrosc., 35 (1981), 88–92 | DOI

[9] A.W. Moore, J.W. Jorgenson, “Median filtering for removal of low-frequency background drift”, Analytical Chemistry, 65 (1993), 188–191 | DOI