Computational and experimental study of frequencies and natural mode of welded shell of coriolis flowmeter
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 1, pp. 45-51
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is dedicated to computational and experimental determination of frequencies and natural modes of welded shell of Coriolis flowmeter. Coriolis flowmeter is intended for measuring mass flow of fluids and gases. A shell of Corilis flowmeter is welded out of 12Х18Н10Т thin steel plates. Forms and natural oscillation modes of the shell are determined by calculation using the finite elements method and experimentally, using the technique of experimental modal analysis. During the experimental determination of modal characteristics of a freely hanging shell, oscillations were excited with the use of an impact hammer and a modal oscillation table. In order to evaluate precision of computational and experimental forms, Modal Assurance Criterion (MAC) is used. It is shown that the difference of frequencies and natural modes of the shell between calculation and experiment exceeds 30 %, and the difference between frequencies and natural modes of separate elements of the shell which do not contain welded joints does not exceed 3 %. Therefore, the most probable cause of differences of computational and experimental frequencies and natural modes of the shell are welded joints which are not considered in its finite element model. An assumption that such significant difference can be explained by the occurring after welding residual stress is made. In order to test this hypothesis, a tempering of the welded shell is carried out. It is determined that after the tempering the difference between computational and experimental forms and frequencies of natural modes of the shell decreased to 6 %. The obtained result allowed explaining the cause of inconsistency of computational and experimental frequencies and forms of natural modes of the flowmeter's shell.
Keywords: Coriolis flowmeter, finite elements method, natural frequency, natural mode, experimental modal analysis, residual stress.
Mots-clés : modal assurance criterion (MAC)
@article{VYURM_2018_10_1_a5,
     author = {A. A. Yaushev and P. A. Taranenko and A. V. Zhestkov and V. A. Loginovskiy},
     title = {Computational and experimental study of frequencies and natural mode of welded shell of coriolis flowmeter},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {45--51},
     year = {2018},
     volume = {10},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a5/}
}
TY  - JOUR
AU  - A. A. Yaushev
AU  - P. A. Taranenko
AU  - A. V. Zhestkov
AU  - V. A. Loginovskiy
TI  - Computational and experimental study of frequencies and natural mode of welded shell of coriolis flowmeter
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2018
SP  - 45
EP  - 51
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a5/
LA  - ru
ID  - VYURM_2018_10_1_a5
ER  - 
%0 Journal Article
%A A. A. Yaushev
%A P. A. Taranenko
%A A. V. Zhestkov
%A V. A. Loginovskiy
%T Computational and experimental study of frequencies and natural mode of welded shell of coriolis flowmeter
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2018
%P 45-51
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a5/
%G ru
%F VYURM_2018_10_1_a5
A. A. Yaushev; P. A. Taranenko; A. V. Zhestkov; V. A. Loginovskiy. Computational and experimental study of frequencies and natural mode of welded shell of coriolis flowmeter. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 1, pp. 45-51. http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a5/

[1] R. Baker, T. Wang, “Coriolis flowmeters: a review of developments over the past 20 years, and an assessment of the state of the art and likely future directions”, Flow Measurement and Instrumentation, 40 (2014), 99–123 | DOI

[2] K.O. Plache, R. Loxton, P. Pope, Measuring mass flow using the Coriolis principle, Springer, Boston, MA, 1990, 55–62

[3] H. Raszillier, F. Durst, “Coriolis-effect in mass flow metering”, Archive of Applied Mechanics, 61:3 (1991), 192–214 | Zbl

[4] A.A. Yaushev, P.A. Taranenko, V.A. Loginovskiy, “Study of the Oscillation Modes of a Coriolis Flowmeter Using a Parametric Finite Element Model, Verified by the Results of Modal Testing”, International Conference on Industrial Engineering, Procedia Engineering, 150, 2016, 336–340 | DOI

[5] J. Melcer, “Experimental Verification of a Computing Model”, Applied Mechanics Materials, 732 (2014), 345–348 | DOI

[6] Mezhin V.S., Obukhov V.V., “The practice of using modal tests to verify finite element models of rocket and space hardware”, Space technics and technology, 2014, no. 1(4), 86–91 (in Russ.)

[7] Dossing O., Structural Testing, Mechanical Mobility Measurements, Brüel Kjae, Denmark, 1989, 101 pp.

[8] D.J. Ewins, Modal Testing: Theory, Practice and Application, Research Studies Press, Hertfordshire, 2000, 562 pp.

[9] Heylen W., Lammens S., Sas P., Modal Analysis Theory and Testing, Katholieke Universiteit Leuven, 1997, 340 pp.

[10] B. Peeters, H. Auweraer, P. Guillaume, J. Leuridan, “The PolyMAX frequency-domain method: a new standard for modal parameter estimation”, Shock and Vibration, 11 (2004), 395–409 | DOI

[11] Peeters B., “Automotive and aerospace applications of the PolyMAX modal parameter estimation method”, Proceeding of IMAC, 22 (2004), 26–29

[12] R.J. Allemang, “The Modal Assurance Criterion — Twenty Years of Use and Abuse”, Sound and Vibration, University of Cincinnati, 2003, 14–21

[13] Elmuratov S.K., “Calculation of flexible covers and plates on stability and fluctuations”, Science and Technology of Kazakhstan, 2013, no. 1–2, 26–29

[14] S. Lee, T. Tanaka, K. Inoue, J.-M. Kim et al., “Stress Influences on the Ultrasonic Transducers”, Sensors and Actuators A: Physical, 119:2 (2005), 405–411 | DOI

[15] N.S. Rossini, M. Dassisti, K.Y. Benyounis, A.G. Olabib, “Methods of measuring residual stresses in components”, Materials and Design, 35 (2012), 572–588 | DOI