@article{VYURM_2018_10_1_a2,
author = {D. A. Tursunov and K. Alymkulov and B. A. Azimov},
title = {Asymptotics of solution of the singularly perturbed {Dirichlet} problem with a weak critical point},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {21--26},
year = {2018},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a2/}
}
TY - JOUR AU - D. A. Tursunov AU - K. Alymkulov AU - B. A. Azimov TI - Asymptotics of solution of the singularly perturbed Dirichlet problem with a weak critical point JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 21 EP - 26 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a2/ LA - ru ID - VYURM_2018_10_1_a2 ER -
%0 Journal Article %A D. A. Tursunov %A K. Alymkulov %A B. A. Azimov %T Asymptotics of solution of the singularly perturbed Dirichlet problem with a weak critical point %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 21-26 %V 10 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a2/ %G ru %F VYURM_2018_10_1_a2
D. A. Tursunov; K. Alymkulov; B. A. Azimov. Asymptotics of solution of the singularly perturbed Dirichlet problem with a weak critical point. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 1, pp. 21-26. http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a2/
[1] Cole J. D., Perturbation Methods in Applied Mathematics, Blaisdell Publishing Company, Waltham, Massachusetts, 1968, 260 pp. | MR | Zbl
[2] Zulpukarov A. Z., The method of structural splicing for solving boundary value problems of singularly perturbed secondorder equations, Dissertation of the candidate of physical and mathematical sciences, Osh, 2009, 114 pp. (in Russ.)
[3] K. Alymkulov, D.A. Tursunov, B.A. Azimov, “Generalized method of boundary layer function for bisingularly perturbed differential Cole equation”, Far East Journal of Mathematical Sciences (FJMS), 101:3, 507–516 | DOI | MR | Zbl
[4] Ilin A. M., Danilin A. R., Asymptotic methods in analysis, Fizmatlit Publ., M., 2009, 248 pp. (in Russ.)