@article{VYURM_2018_10_1_a0,
author = {O. V. Okhlupina},
title = {Description of some weighted exponential classes of subharmonic functions},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--11},
year = {2018},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a0/}
}
TY - JOUR AU - O. V. Okhlupina TI - Description of some weighted exponential classes of subharmonic functions JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 5 EP - 11 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a0/ LA - en ID - VYURM_2018_10_1_a0 ER -
%0 Journal Article %A O. V. Okhlupina %T Description of some weighted exponential classes of subharmonic functions %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 5-11 %V 10 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a0/ %G en %F VYURM_2018_10_1_a0
O. V. Okhlupina. Description of some weighted exponential classes of subharmonic functions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a0/
[1] W.K. Hayman, Subharmonic functions, v. 2, Acad. Press, London etc., 1989, 591 pp. | MR | Zbl
[2] Ronkin L. I., Introduction to the theory of entire functions of several variables, Nauka Publ., M., 1971, 432 pp. (in Russ.)
[3] Azarin V. S., The theory of growth of subharmonic functions, KhGU Publ., Kharkov, 1982, 73 pp. (in Russ.)
[4] Ohlupina O. V., Potentials of Green's type and integral representations of the weight classes of subharmonic functions, Dissertation of the candidate of physical and mathematical sciences, Briansk, 2012, 118 pp. (in Russ.)
[5] Brelot M., Elements de la theorie classique du potentiel, Paris, 1961, 191 pp. (in Fr.) | MR
[6] Bykov S. V., Shamoian F. A., “On the zeros of entire functions with majorant of infinite order”, Algebra i analiz, 21:6 (2009), 66–79 (in Russ.) | Zbl
[7] F.A. Shamoyan, A.E. Djrbashian, Topics in the theory of $A_\alpha^p$ spaces, Teubner Texts in Mathematics, 105, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1988, 200 pp. | MR
[8] Shamoian F. A., Shubabko E. N., Introduction to the theory of the weight $L^p$-classes of meromorphic functions, RIO BGU Publ., Brjansk, 2009, 153 pp. (in Russ.)