Description of some weighted exponential classes of subharmonic functions
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 1, pp. 5-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The role of subharmonic functions in such sections of analysis as complex and real analysis is very significant. Such classes of functions are closely related to analytic harmonic functions and make an important contribution to the general theory of potential and mathematical physics. In the works of R. Nevanlinna and W. Heiman, parametric representations of subharmonic classes in the plane of functions, whose characteristic has a power growth at infinity, are obtained. The question of whether similar representations are true for weighted classes that admit a stronger growth at infinity (for example, the exponential growth) arises in the theory of entire and meromorphic functions. In this article, classes of subharmonic functions with Nevanlinna characteristic that is summable with exponential weight in a complex plane are introduced for consideration, and the representing measures of functions of such classes are studied. When proving the results, methods of complex and functional analysis are used. An important role in the study is played by potentials based on the factors of the modified Weierstrass product. The proof of the main result is based on the use of auxiliary assertions formulated in the form of lemmas.
Keywords: subharmonic function, harmonic function, representing measures, theNevanlinna’s characteristic.
@article{VYURM_2018_10_1_a0,
     author = {O. V. Okhlupina},
     title = {Description of some weighted exponential classes of subharmonic functions},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--11},
     year = {2018},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a0/}
}
TY  - JOUR
AU  - O. V. Okhlupina
TI  - Description of some weighted exponential classes of subharmonic functions
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2018
SP  - 5
EP  - 11
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a0/
LA  - en
ID  - VYURM_2018_10_1_a0
ER  - 
%0 Journal Article
%A O. V. Okhlupina
%T Description of some weighted exponential classes of subharmonic functions
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2018
%P 5-11
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a0/
%G en
%F VYURM_2018_10_1_a0
O. V. Okhlupina. Description of some weighted exponential classes of subharmonic functions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/VYURM_2018_10_1_a0/

[1] W.K. Hayman, Subharmonic functions, v. 2, Acad. Press, London etc., 1989, 591 pp. | MR | Zbl

[2] Ronkin L. I., Introduction to the theory of entire functions of several variables, Nauka Publ., M., 1971, 432 pp. (in Russ.)

[3] Azarin V. S., The theory of growth of subharmonic functions, KhGU Publ., Kharkov, 1982, 73 pp. (in Russ.)

[4] Ohlupina O. V., Potentials of Green's type and integral representations of the weight classes of subharmonic functions, Dissertation of the candidate of physical and mathematical sciences, Briansk, 2012, 118 pp. (in Russ.)

[5] Brelot M., Elements de la theorie classique du potentiel, Paris, 1961, 191 pp. (in Fr.) | MR

[6] Bykov S. V., Shamoian F. A., “On the zeros of entire functions with majorant of infinite order”, Algebra i analiz, 21:6 (2009), 66–79 (in Russ.) | Zbl

[7] F.A. Shamoyan, A.E. Djrbashian, Topics in the theory of $A_\alpha^p$ spaces, Teubner Texts in Mathematics, 105, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1988, 200 pp. | MR

[8] Shamoian F. A., Shubabko E. N., Introduction to the theory of the weight $L^p$-classes of meromorphic functions, RIO BGU Publ., Brjansk, 2009, 153 pp. (in Russ.)