A new method of obtaining optical super-oscillations based on threewave interference
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 4, pp. 59-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Optical super-oscillation is one of the methods to overcome diffraction limit. The phenomenon of super oscillations has been known for more than half a century, but there is still a limited set of shapes of the resulting light distribution patterns. The use of interference of Bessel and Gauss beams is currently the most studied theoretically and in fact the only method of obtaining optical super oscillations in practice. The paper presents a new method of obtaining optical super-oscillations based on three wave interference. We have studied the theoretical basis for obtaining optical super-oscillations considering distribution of the field amplitude in the interference of three coherent collimated sources. The dependence of the contrast of optical super-oscillations on the ratio of wave amplitudes, which has an exponential form, is studied. The correlation of the size of optical super-oscillations depending on the contrast which is proved to be of a power form is analyzed. We have modeled two-dimensional interference patterns of optical super-oscillations obtained by three coplanar waves. In this case optical super oscillations have a constant size along interference fringes. In case of noncoplanar waves when moving along interference fringes periodic extinction and appearance of optical super-oscillations are observed.
Keywords: optical super-oscillations, interference, subwave effects.
@article{VYURM_2017_9_4_a7,
     author = {M. A. Dryazgov and I. V. Sviridova and D. S. Isakov and Yu. V. Miklyaev},
     title = {A new method of obtaining optical super-oscillations based on threewave interference},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {59--65},
     year = {2017},
     volume = {9},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a7/}
}
TY  - JOUR
AU  - M. A. Dryazgov
AU  - I. V. Sviridova
AU  - D. S. Isakov
AU  - Yu. V. Miklyaev
TI  - A new method of obtaining optical super-oscillations based on threewave interference
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2017
SP  - 59
EP  - 65
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a7/
LA  - ru
ID  - VYURM_2017_9_4_a7
ER  - 
%0 Journal Article
%A M. A. Dryazgov
%A I. V. Sviridova
%A D. S. Isakov
%A Yu. V. Miklyaev
%T A new method of obtaining optical super-oscillations based on threewave interference
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2017
%P 59-65
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a7/
%G ru
%F VYURM_2017_9_4_a7
M. A. Dryazgov; I. V. Sviridova; D. S. Isakov; Yu. V. Miklyaev. A new method of obtaining optical super-oscillations based on threewave interference. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 4, pp. 59-65. http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a7/

[1] E.T.F. Rogers, N.I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging”, Journal of Optics, 15:9 (2013), 94008 | DOI

[2] N. Ohmer, B. Fenk, D. Samuelis et al., “Phase evolution in single-crystalline LiFePO4 followed by in situ scanning X-ray microscopy of a micrometre-sized battery”, Nature Communications, 6 (2015), 6045 | DOI

[3] Z. Wang, L. Alrehaily, J. Joseph et al., “Scanning transmission X-ray microscopy studies of chromium hydroxide hollow spheres and nanoparticles formed by gamma-radiation”, Canadian Journal of Chemistry, 2017, 1–5 | DOI

[4] G.J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses”, Journal of Microscopy, 117:2 (1979), 219–232 | DOI | MR

[5] Y.V. Miklyaev, S.A. Asselborn, A.M. Gerasimov, “Optical near-field scanning by microparticles suspended in immersion fluid”, Technical Physics Letters, 40:8 (2014), 640–643 | DOI

[6] Y.V. Miklyaev, S.A. Asselborn, K.A. Zaytsev, M.Y. Darscht, “Superresolution microscopy in far-field by near-field optical random mapping nanoscopy”, Applied Physics Letters, 105:11 (2014), 113103 | DOI

[7] T. Ilovitsh, A. Ilovitsh, O. Wagner, Z. Zalevsky, “Superresolved nanoscopy using Brownian motion of fluorescently labeled gold nanoparticles”, Applied Optics, 56:5 (2017), 1365–1369 | DOI

[8] A.M.H. Wong, G.V. Eleftheriades, “Superoscillations without Sidebands: Power-Efficient Sub-Diffraction Imaging with Propagating Waves”, Scientific Reports, 5 (2015), 8449 | DOI

[9] L. Chojnacki, A. Kempf, “New methods for creating superoscillations”, Journal of Physics A: Mathematical and Theoretical, 49:50 (2016), 505203 | DOI | MR | Zbl

[10] C.J. Bouwkamp, N.G. de Bruijn, “The problem of optimum antenna current distribution”, Philips Research Reports, 1 (1945), 135–158 | MR

[11] B.P.M. Woodward, J.D. Lawson, “The theoretical precision with which an arbitrary radiation-pattern may be obtained from a source of finite size, (2)”, Journal of the Institution of Electrical Engineers - Part I: General, 95:93 (1948), 405 | DOI

[12] G.T. Di Francia, “Super-gain antennas and optical resolving power”, Il Nuovo Cimento, 9, Supplement 3 (1952), 426–438 | DOI

[13] A.M.H. Wong, G.V. Eleftheriades, “Adaptation of Schelkunoff's superdirective antenna theory for the realization of superoscillatory antenna arrays”, IEEE Antennas and Wireless Propagation Letters, 9 (2010), 315–318 | DOI | MR

[14] E. Greenfield, R. Schley, I. Hurwitz et al., “Experimental generation of arbitrarily shaped diffractionless superoscillatory optical beams”, Optics Express, 21:11 (2013), 13425–13435 | DOI

[15] E.T.F. Rogers, J. Lindberg, T. Roy, “A super-oscillatory lens optical microscope for subwavelength imaging”, Nature Materials, 11:5 (2012), 432–435 | DOI