Simulation of the thermal constituent of molecular crystals state equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 4, pp. 43-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The analysis of existing approximations to describe the dependence of the heat capacity at a constant volume on the temperature of the molecular crystal has shown that the given approximations do not adequately describe the dependence of the heat capacity at a constant volume on the temperature. Therefore, in this paper for the heat capacity at a constant volume of a molecular crystal such approximation is given which makes it possible to describe both the low frequency and the high frequency parts of the vibrational spectra of molecular crystals and to obtain the temperature dependence of the heat capacity at a constant volume for molecular crystals of nitro compounds which is in line with the known dependencies. The knowledge of the dependence of the heat capacity at a constant volume on the temperature of a molecular crystal is of a great importance at the developing of the equations of state which are the closing relations of mathematical models rendering the propagation of shock waves, initiation of detonation in molecular crystals, etc. The separation of the frequencies of normal vibrations into intramolecular vibrational frequencies and the vibrations of the molecule as a whole (three vibrations of the center of gravity of the molecule and three vibrations of Euler angles) made it possible to use methods of quantum chemistry to determine the effect of intramolecular vibrations on the specific heat capacity at a constant volume. The analysis of the proposed approximation carried in the paper has shown that for molecular crystals of cyclonite, penthrite, tritol, tetryl and triaminobtrinitrobenzene the values of the relative heat capacity at a constant volume can be described by a universal curve with one parameter which is equal to 600 K.
Keywords: equation of state, molecular crystal, Helmholtz energy, Boltzmann's constant, Einstein's approximation.
Mots-clés : Planck's constant, Debye approximation
@article{VYURM_2017_9_4_a5,
     author = {Yu. M. Kovalev and O. A. Shershneva},
     title = {Simulation of the thermal constituent of molecular crystals state equations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {43--51},
     year = {2017},
     volume = {9},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a5/}
}
TY  - JOUR
AU  - Yu. M. Kovalev
AU  - O. A. Shershneva
TI  - Simulation of the thermal constituent of molecular crystals state equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2017
SP  - 43
EP  - 51
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a5/
LA  - ru
ID  - VYURM_2017_9_4_a5
ER  - 
%0 Journal Article
%A Yu. M. Kovalev
%A O. A. Shershneva
%T Simulation of the thermal constituent of molecular crystals state equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2017
%P 43-51
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a5/
%G ru
%F VYURM_2017_9_4_a5
Yu. M. Kovalev; O. A. Shershneva. Simulation of the thermal constituent of molecular crystals state equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 4, pp. 43-51. http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a5/

[1] Zharkov V. N., Kalinin V. A., Equations of state at high temperature and pressure, Nauka Publ., M., 1968, 311 pp. (in Russ.)

[2] Kuropatenko V. F., “Equations of state in mathematical models of mechanics and physics”, Matematicheskoe modelirovanie, 4:12 (1992), 112–136 (in Russ.)

[3] Kovalev Yu.M., “Analysis of Some Approximation for the Description of Thermal Side of the Equation States of Molecular Crystals”, Bulletin of the South Ural State University. Series of “Mathematics. Mechanics. Physics”, 9:1 (2017), 49–56 | DOI | Zbl

[4] Zhirifal'ko L., Statistical physics of solid body, Mir Publ., M., 1975, 382 pp. (in Russ.)

[5] Kitaygorodskiy A. I., Molecular crystals, Nauka Publ., M., 1971, 424 pp. (in Russ.)

[6] B.M. Dobratz, P.C. Crawford, LLNL Explosives Handbook. Properties of Chemical Explosives and Explosive Simulants, Report UCRL-52997, Lawrence Livermore National Laboratory, 1985

[7] T.R. Gibbs, A. Popolato, Last explosive property data, Los Alamos series on dynamic material properties, University of California Press, Berkeley–Los Angeles–London, 1980

[8] Kovalev Yu.M., “Mathematical Modelling of the Thermal Component of the Equation of State of Molecular Crystals”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming Computer Software, 6:1 (2013), 34–42

[9] Kovalev Yu.M., Belik A. V., Vestnik Chelyabinskogo gosudarstvennogo universiteta, 2013, no. 9(300), 5–10 (in Russ.)

[10] P.J. Miller, S. Block, G.J. Piermarini, “Effect of Pressure on the Vibration Spectra of Liquid Nitromethane”, J. of Physical Chemistry, 93:1 (1989), 462–466 | DOI

[11] Shchetinin V. G., Khimicheskaya fizika, 18:5 (1999), 90–95 | Zbl

[12] Klark T., Computer chemistry, Mir Publ., M., 1990, 384 pp. (in Russ.)

[13] Stepanov N. F., Novakovskaya Yu.V., “Quantum Chemistry Today”, Rossiyskiy khimicheskiy zhurnal, LI:5 (2007), 5–17 (in Russ.)