@article{VYURM_2017_9_4_a3,
author = {N. N. Solovyova and S. A. Zagrebina and G. A. Sviridyuk},
title = {Sobolev type mathematical models with relatively positive operators in the sequence spaces},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {27--35},
year = {2017},
volume = {9},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a3/}
}
TY - JOUR AU - N. N. Solovyova AU - S. A. Zagrebina AU - G. A. Sviridyuk TI - Sobolev type mathematical models with relatively positive operators in the sequence spaces JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2017 SP - 27 EP - 35 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a3/ LA - en ID - VYURM_2017_9_4_a3 ER -
%0 Journal Article %A N. N. Solovyova %A S. A. Zagrebina %A G. A. Sviridyuk %T Sobolev type mathematical models with relatively positive operators in the sequence spaces %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2017 %P 27-35 %V 9 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a3/ %G en %F VYURM_2017_9_4_a3
N. N. Solovyova; S. A. Zagrebina; G. A. Sviridyuk. Sobolev type mathematical models with relatively positive operators in the sequence spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 4, pp. 27-35. http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a3/
[1] Barenblatt G. I., Zheltov Iu.P., Kochina I. N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]”, Journal of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303 | DOI | Zbl
[2] M. Hallaire, “Soil water movement in the film and vapor phase under the influence of evapotranspiration. Water and its conduction insoils”, Proceedings of XXXVII Annual Meeting of the Highway Research Board, Highway Research Board Special Report, 40, 1958, 88–105
[3] P.J. Chen, M.E. Gurtin, “On a Theory of Heat Conduction Involving Two Temperatures”, Journal of Applied Mathematics and Physics (ZAMP), 19:4 (1968), 614–627 | DOI | Zbl
[4] N.J. Hoff, “Creep buckling”, The Aeronautical Quarterly, 7:1 (1956), 1–20 | MR
[5] G.A. Sviridyuk, V.E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | DOI | MR | Zbl
[6] J. Banasiak, L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer-Verlag, London Limited, 2006, 438 pp. | DOI | MR | Zbl
[7] M.D. Chekroun, E. Park, R. Temam, “The Stampacchia maximum principle for stochastic partial equations and applications”, Journal of Differential Equations, 260:3 (2016), 2926–2972 | DOI | MR | Zbl
[8] Sviridyuk G. A., Zagrebina S. A., “The Showalter-Sidorov problem as a phenomena of the Sobolevtype equations”, Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya “Matematika”, 3:1 (2010), 104–125 (in Russ.) | Zbl
[9] Sviridyuk G. A., Manakova N. A., “Dynamic models of Sobolev type with the Showalter–Sidorov condition and additive “noises””, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 7:1 (2014), 90–103 (in Russ.) | DOI
[10] Zagrebina S. A., “A multipoint initial-final value problem for a linear model of plane-parallel thermal convection in viscoelastic incompressible fluid”, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 7:3 (2014), 5–22 | DOI | Zbl
[11] A. Favini, G.A. Sviridyuk, N.A. Manakova, “Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “noises””, Abstract and Applied Analysis, 2015 (2015), 697410 10.1155/2015/697410 | MR | Zbl
[12] A. Favini, G.A. Sviridyuk, M.A. Sagadeeva, “Linear Sobolev type equations with relatively p-radial operators in space of “noises””, Mediterranian Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR | Zbl
[13] A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva, “One class of Sobolev type equations of higher order with additive “white noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | DOI | MR | Zbl