Sobolev type mathematical models with relatively positive operators in the sequence spaces
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 4, pp. 27-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the sequence spaces which are analogues of Sobolev function spaces we consider mathematical model whose prototypes are Barenblatt–Zheltov–Kochina equation and Hoff equation. One should mention that these equations are degenerate equations or Sobolev type equations. Nonexistence and nonuniqueness of the solutions is the peculiar feature of such equations. Therefore, to find the conditions for positive solution of the equations is a topical research direction. The paper highlights the conditions sufficient for positive solutions in the given mathematical model. The foundation of our research is the theory of the positive semigroups of operators and the theory of degenerate holomorphic groups of operators. As a result of merging of these theories a new theory of degenerate positive holomorphic groups of operators has been obtained. The authors believe that the results of a new theory will find their application in economic and engineering problems.
Keywords: Sobolev sequence spaces, Sobolev type models, degenerate positive holomorphic groups of operators.
@article{VYURM_2017_9_4_a3,
     author = {N. N. Solovyova and S. A. Zagrebina and G. A. Sviridyuk},
     title = {Sobolev type mathematical models with relatively positive operators in the sequence spaces},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {27--35},
     year = {2017},
     volume = {9},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a3/}
}
TY  - JOUR
AU  - N. N. Solovyova
AU  - S. A. Zagrebina
AU  - G. A. Sviridyuk
TI  - Sobolev type mathematical models with relatively positive operators in the sequence spaces
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2017
SP  - 27
EP  - 35
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a3/
LA  - en
ID  - VYURM_2017_9_4_a3
ER  - 
%0 Journal Article
%A N. N. Solovyova
%A S. A. Zagrebina
%A G. A. Sviridyuk
%T Sobolev type mathematical models with relatively positive operators in the sequence spaces
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2017
%P 27-35
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a3/
%G en
%F VYURM_2017_9_4_a3
N. N. Solovyova; S. A. Zagrebina; G. A. Sviridyuk. Sobolev type mathematical models with relatively positive operators in the sequence spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 4, pp. 27-35. http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a3/

[1] Barenblatt G. I., Zheltov Iu.P., Kochina I. N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]”, Journal of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303 | DOI | Zbl

[2] M. Hallaire, “Soil water movement in the film and vapor phase under the influence of evapotranspiration. Water and its conduction insoils”, Proceedings of XXXVII Annual Meeting of the Highway Research Board, Highway Research Board Special Report, 40, 1958, 88–105

[3] P.J. Chen, M.E. Gurtin, “On a Theory of Heat Conduction Involving Two Temperatures”, Journal of Applied Mathematics and Physics (ZAMP), 19:4 (1968), 614–627 | DOI | Zbl

[4] N.J. Hoff, “Creep buckling”, The Aeronautical Quarterly, 7:1 (1956), 1–20 | MR

[5] G.A. Sviridyuk, V.E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | DOI | MR | Zbl

[6] J. Banasiak, L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer-Verlag, London Limited, 2006, 438 pp. | DOI | MR | Zbl

[7] M.D. Chekroun, E. Park, R. Temam, “The Stampacchia maximum principle for stochastic partial equations and applications”, Journal of Differential Equations, 260:3 (2016), 2926–2972 | DOI | MR | Zbl

[8] Sviridyuk G. A., Zagrebina S. A., “The Showalter-Sidorov problem as a phenomena of the Sobolevtype equations”, Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya “Matematika”, 3:1 (2010), 104–125 (in Russ.) | Zbl

[9] Sviridyuk G. A., Manakova N. A., “Dynamic models of Sobolev type with the Showalter–Sidorov condition and additive “noises””, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 7:1 (2014), 90–103 (in Russ.) | DOI

[10] Zagrebina S. A., “A multipoint initial-final value problem for a linear model of plane-parallel thermal convection in viscoelastic incompressible fluid”, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 7:3 (2014), 5–22 | DOI | Zbl

[11] A. Favini, G.A. Sviridyuk, N.A. Manakova, “Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “noises””, Abstract and Applied Analysis, 2015 (2015), 697410 10.1155/2015/697410 | MR | Zbl

[12] A. Favini, G.A. Sviridyuk, M.A. Sagadeeva, “Linear Sobolev type equations with relatively p-radial operators in space of “noises””, Mediterranian Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR | Zbl

[13] A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva, “One class of Sobolev type equations of higher order with additive “white noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | DOI | MR | Zbl