Sobolev type mathematical models with relatively positive operators in the sequence spaces
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 4, pp. 27-35
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the sequence spaces which are analogues of Sobolev function spaces we consider mathematical model whose prototypes are Barenblatt–Zheltov–Kochina equation and Hoff equation. One should mention that these equations are degenerate equations or Sobolev type equations. Nonexistence and nonuniqueness of the solutions is the peculiar feature of such equations. Therefore, to find the conditions for positive solution of the equations is a topical research direction. The paper highlights the conditions sufficient for positive solutions in the given mathematical model. The foundation of our research is the theory of the positive semigroups of operators and the theory of degenerate holomorphic groups of operators. As a result of merging of these theories a new theory of degenerate positive holomorphic groups of operators has been obtained. The authors believe that the results of a new theory will find their application in economic and engineering problems.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Sobolev sequence spaces, Sobolev type models, degenerate positive holomorphic groups of operators.
                    
                    
                    
                  
                
                
                @article{VYURM_2017_9_4_a3,
     author = {N. N. Solovyova and S. A. Zagrebina and G. A. Sviridyuk},
     title = {Sobolev type mathematical models with relatively positive operators in the sequence spaces},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {27--35},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a3/}
}
                      
                      
                    TY - JOUR AU - N. N. Solovyova AU - S. A. Zagrebina AU - G. A. Sviridyuk TI - Sobolev type mathematical models with relatively positive operators in the sequence spaces JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2017 SP - 27 EP - 35 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a3/ LA - en ID - VYURM_2017_9_4_a3 ER -
%0 Journal Article %A N. N. Solovyova %A S. A. Zagrebina %A G. A. Sviridyuk %T Sobolev type mathematical models with relatively positive operators in the sequence spaces %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2017 %P 27-35 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a3/ %G en %F VYURM_2017_9_4_a3
N. N. Solovyova; S. A. Zagrebina; G. A. Sviridyuk. Sobolev type mathematical models with relatively positive operators in the sequence spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 4, pp. 27-35. http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a3/
