On the source function recovering in quazilinear parabolic problems with pointwise overdetermination conditions
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 4, pp. 19-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we examine the question of well-posedness in the Sobolev spaces of the inverse source problem in the case of a quasilinear parabolic system of the second order. These problems arise when describing heat and mass transfer, diffusion, filtration, and in many other fields. The main part of the operator is linear. The unknown functions depending on time occur in the nonlinear right-hand side. In particular, this class of problems includes the coefficient inverse problems on determination of the lower order coefficients in a parabolic equation or a system. The overdetermination conditions are the values of the solution at some collection of points lying inside the spacial domain. The Dirichlet and oblique derivative problems are taken as boundary conditions. The problems are studied in a bounded domain with a smooth boundary. However, the results can be generalized to the case of unbounded domains as well for which the corresponding solvability theorems hold. The conditions ensuring local in time well-posedness of the problem in the Sobolev classes are exposed. The conditions on the data are minimal. The results are sharp. The problem is reduced to an operator equation whose solvability is proven with the use of a priori bounds and the fixed point theorem. The solution possesses all generalized derivatives occurring in the system which belong to the space $L_p$ with $p>n+2$ and some additional necessary smoothness in some neighborhood about the overdetermination points.
Mots-clés : parabolic equation
Keywords: inverse problem, heat-and-mass transfer, boundary value problem, source function.
@article{VYURM_2017_9_4_a2,
     author = {S. G. Pyatkov and V. V. Rotko},
     title = {On the source function recovering in quazilinear parabolic problems with pointwise overdetermination conditions},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {19--26},
     year = {2017},
     volume = {9},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a2/}
}
TY  - JOUR
AU  - S. G. Pyatkov
AU  - V. V. Rotko
TI  - On the source function recovering in quazilinear parabolic problems with pointwise overdetermination conditions
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2017
SP  - 19
EP  - 26
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a2/
LA  - ru
ID  - VYURM_2017_9_4_a2
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%A V. V. Rotko
%T On the source function recovering in quazilinear parabolic problems with pointwise overdetermination conditions
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2017
%P 19-26
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a2/
%G ru
%F VYURM_2017_9_4_a2
S. G. Pyatkov; V. V. Rotko. On the source function recovering in quazilinear parabolic problems with pointwise overdetermination conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 4, pp. 19-26. http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a2/

[1] G.I. Marchuk, “Mathematical Models in Environmental Problems”, Studies in Mathematics and its Applications, 16, 1986, 5–6 | DOI | MR

[2] Prilepko A. I., Solov'ev V.V., “Solvability theorems and the Rothe method in inverse problems for an equation of parabolic type. I”, Differ. Uravn., 23:10 (1987), 1791–1799 (in Russ.) | Zbl

[3] O.A. Afinogenova, Yu.Ya. Belov, I.V. Frolenkov, “Stabilization of the solution to the identification problem of the source function for a one-dimensional parabolic equation”, Doklady Mathematics, 79:1 (2009), 70–72 | DOI | MR | Zbl

[4] Belov Yu.Ya., Kirshun K. V., “On recovering the source function for the Burgers-type equation”, Journal of Siberian Federal University. Mathematics Physics, 5:4 (2012), 497–506 (in Russ.)

[5] Kuliev M. A., “A multidimesional inverse problem for a parabolic equation in a bounded domain”, Nelineynye granichnye zadachi, 14, 2004, 138–145 (in Russ.) | Zbl

[6] Prilepko A. I., Solov'ev V.V., “Solvability of the inverse boundary-value problem of finding a coefficient of a lower-order derivative in a parabolic equation”, Differ. Equations, 23:1 (1987), 101–107 | MR | Zbl

[7] D. Guidetti, “Asymptotic expansion of solutions to an inverse problem of parabolic type”, Advances in Difference Equations, 13:5–6 (2008), 399–426 | MR | Zbl

[8] D. Guidetti, “Convergence to a stationary state of solutions to inverse problems of parabolic type”, Discrete and continuous dynamical systems. Series S, 6:3 (2013), 711–722 | DOI | MR | Zbl

[9] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for solving inverse problems in Mathematical Physics, Marcel Dekker, Inc, New-York, 1999, 709 pp. | MR

[10] Pyatkov S. G., Samkov M. L., “On some classes of coefficient inverse problems for parabolic systems of equations”, Siberian Advances in Mathematics, 22:4 (2012), 287–302 | DOI | MR | Zbl

[11] M.N. Ozisik, H.R.B. Orlande, Inverse Heat Transfer: Fundamentals and Applications, Taylor Francis, New York, 2000, 314 pp. | MR

[12] A.V. Mamonov, Y-H. R. Tsai, “Point source identification in nonlinear advection-diffusion-reaction systems”, Inverse Problems, 29:3 (2013), 035009 | DOI | MR | Zbl

[13] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | MR

[14] R. Denk, M. Hieber, J. Prüss, “Optimal $L^p$-$L^q$-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Z., 257:1 (2007), 193–224 | DOI | MR | Zbl

[15] Ladyzenskaja O. A., Solonnikov V. A., Ural'ceva N. N., Linear and quasi-linear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968, 648 pp. | MR

[16] H. Amann, “Compact embeddings of vector-valued Sobolev and Besov spaces”, Glasnik matematicki. III. Ser., 35:1 (2000), 161–177 | MR | Zbl