Keywords: inverse problem, heat-and-mass transfer, boundary value problem, source function.
@article{VYURM_2017_9_4_a2,
author = {S. G. Pyatkov and V. V. Rotko},
title = {On the source function recovering in quazilinear parabolic problems with pointwise overdetermination conditions},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {19--26},
year = {2017},
volume = {9},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a2/}
}
TY - JOUR AU - S. G. Pyatkov AU - V. V. Rotko TI - On the source function recovering in quazilinear parabolic problems with pointwise overdetermination conditions JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2017 SP - 19 EP - 26 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a2/ LA - ru ID - VYURM_2017_9_4_a2 ER -
%0 Journal Article %A S. G. Pyatkov %A V. V. Rotko %T On the source function recovering in quazilinear parabolic problems with pointwise overdetermination conditions %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2017 %P 19-26 %V 9 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a2/ %G ru %F VYURM_2017_9_4_a2
S. G. Pyatkov; V. V. Rotko. On the source function recovering in quazilinear parabolic problems with pointwise overdetermination conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 4, pp. 19-26. http://geodesic.mathdoc.fr/item/VYURM_2017_9_4_a2/
[1] G.I. Marchuk, “Mathematical Models in Environmental Problems”, Studies in Mathematics and its Applications, 16, 1986, 5–6 | DOI | MR
[2] Prilepko A. I., Solov'ev V.V., “Solvability theorems and the Rothe method in inverse problems for an equation of parabolic type. I”, Differ. Uravn., 23:10 (1987), 1791–1799 (in Russ.) | Zbl
[3] O.A. Afinogenova, Yu.Ya. Belov, I.V. Frolenkov, “Stabilization of the solution to the identification problem of the source function for a one-dimensional parabolic equation”, Doklady Mathematics, 79:1 (2009), 70–72 | DOI | MR | Zbl
[4] Belov Yu.Ya., Kirshun K. V., “On recovering the source function for the Burgers-type equation”, Journal of Siberian Federal University. Mathematics Physics, 5:4 (2012), 497–506 (in Russ.)
[5] Kuliev M. A., “A multidimesional inverse problem for a parabolic equation in a bounded domain”, Nelineynye granichnye zadachi, 14, 2004, 138–145 (in Russ.) | Zbl
[6] Prilepko A. I., Solov'ev V.V., “Solvability of the inverse boundary-value problem of finding a coefficient of a lower-order derivative in a parabolic equation”, Differ. Equations, 23:1 (1987), 101–107 | MR | Zbl
[7] D. Guidetti, “Asymptotic expansion of solutions to an inverse problem of parabolic type”, Advances in Difference Equations, 13:5–6 (2008), 399–426 | MR | Zbl
[8] D. Guidetti, “Convergence to a stationary state of solutions to inverse problems of parabolic type”, Discrete and continuous dynamical systems. Series S, 6:3 (2013), 711–722 | DOI | MR | Zbl
[9] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for solving inverse problems in Mathematical Physics, Marcel Dekker, Inc, New-York, 1999, 709 pp. | MR
[10] Pyatkov S. G., Samkov M. L., “On some classes of coefficient inverse problems for parabolic systems of equations”, Siberian Advances in Mathematics, 22:4 (2012), 287–302 | DOI | MR | Zbl
[11] M.N. Ozisik, H.R.B. Orlande, Inverse Heat Transfer: Fundamentals and Applications, Taylor Francis, New York, 2000, 314 pp. | MR
[12] A.V. Mamonov, Y-H. R. Tsai, “Point source identification in nonlinear advection-diffusion-reaction systems”, Inverse Problems, 29:3 (2013), 035009 | DOI | MR | Zbl
[13] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | MR
[14] R. Denk, M. Hieber, J. Prüss, “Optimal $L^p$-$L^q$-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Z., 257:1 (2007), 193–224 | DOI | MR | Zbl
[15] Ladyzenskaja O. A., Solonnikov V. A., Ural'ceva N. N., Linear and quasi-linear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968, 648 pp. | MR
[16] H. Amann, “Compact embeddings of vector-valued Sobolev and Besov spaces”, Glasnik matematicki. III. Ser., 35:1 (2000), 161–177 | MR | Zbl