Estimated probability of copper long-lived dimer formation in two particle collisions based on the molecular dynamics simulation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 2, pp. 72-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Knowing the mechanisms of birth, growth and development of nanoparticles is important for optimization of their production techniques. The majority of nanoparcticles production methods implies self-assembly from the liquid or gas phase. The initial stage of homogeneous nucleation from atomic vapor to a considerable degree specifies the ultimate size distribution of particles, which determines the topicality of its study. The paper presents a statistical analysis of the results of molecular dynamics simulation of metal (Cu) vapor nucleation in the inert gas atmosphere (Ar). The peculiar features of the initial stage of nucleation to estimate probability of diatomic molecule growth (Cu$_2$) in the supersaturated nonequilibrium medium are considered. It's shown that as a result of collision of two metal atoms an unstable dimer can be formed, which lifetime is comparable to time between metal atom collisions. Based on the results of the statistical analysis we assess the differential probability of forming the long-lived unstable dimer in two-particle interactions depending on the energy value of colliding particles in the system of their mass center. The integration of differential probability in terms of all energies with regard to theoretical energy distribution of copper atoms at the given temperature has allowed us to arrive at an integral estimate of the probability of forming the long-lived dimer in the Cu-Cu collision. It's been discovered that when increasing the temperature in the range of 300–1500 K the probability of formation is decreased from 0,86 % to 0,16 %.
Mots-clés : metal nanoparticles
Keywords: gas-phase synthesis, homogeneous nucleation.
@article{VYURM_2017_9_2_a8,
     author = {G. P. Sannikov and A. E. Korenchenko},
     title = {Estimated probability of copper long-lived dimer formation in two particle collisions based on the molecular dynamics simulation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {72--77},
     year = {2017},
     volume = {9},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a8/}
}
TY  - JOUR
AU  - G. P. Sannikov
AU  - A. E. Korenchenko
TI  - Estimated probability of copper long-lived dimer formation in two particle collisions based on the molecular dynamics simulation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2017
SP  - 72
EP  - 77
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a8/
LA  - ru
ID  - VYURM_2017_9_2_a8
ER  - 
%0 Journal Article
%A G. P. Sannikov
%A A. E. Korenchenko
%T Estimated probability of copper long-lived dimer formation in two particle collisions based on the molecular dynamics simulation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2017
%P 72-77
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a8/
%G ru
%F VYURM_2017_9_2_a8
G. P. Sannikov; A. E. Korenchenko. Estimated probability of copper long-lived dimer formation in two particle collisions based on the molecular dynamics simulation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 2, pp. 72-77. http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a8/

[1] S. Varshney, A. Ohlan, V. K. Jain et al., “Synthesis of ferrofluid based nanoarchitectured polypyrrole composites and its application for electromagnetic shielding”, Materials Chemistry and Physics, 143:2 (2014), 806–813 | DOI

[2] G. Bottari, A.J. Kumalaputri, K.K. Krawczyk et al., “Copper-Zinc Alloy Nanopowder: A Robust Precious-Metal-Free Catalyst for the Conversion of 5-Hydroxymethylfurfural”, ChemSusChem., 8:8 (2015), 1323–1327 | DOI

[3] M. Uda, H. Okuyama, T. S. Suzuki, Y. Sakka, “Hydrogen generation from water using Mg nanopowder produced by arc plasma method”, Science and Technology of Advanced Materials, 13:2 (2012), 025009 | DOI | MR

[4] S. Jeong, S.H. Lee, Y. Jo et al., “Air-stable, surface-oxide free Cu nanoparticles for highly conductive Cu ink and their application to printed graphene transistors”, J. Mater. Chem., 1:15 (2013), 2704–2710 | DOI

[5] I. Sharifi, H. Shokrollahi, S. Amiri, “Ferrite-based magnetic nanofluids used in hyperthermia applications”, Journal of Magnetism and Magnetic Materials, 324:6 (2012), 903–915 | DOI

[6] Smirnov B. M., “Generation of Cluster Beams”, Physics-Uspekhi, 46:6 (2003), 589–628 | DOI | DOI

[7] Goncharov A. V., Kashtanov P. V., “Modeling of Cluster Formation and Growth under Atomic Vapor Condensation”, High Temperature, 49:2 (2011), 178–186 | DOI

[8] Smirnov B. M., “Clusters and phase transitions”, Physics-Uspekhi, 50:4 (2007), 354–358 | DOI | DOI

[9] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics”, Journal of Computational Physics, 117:1 (1995), 1–19 | DOI | Zbl

[10] S. M. Foiles, M. S. Daw, M. I. Baskes, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys”, Phys. Rev. B, 33:12 (1986), 7983–7991 | DOI

[11] E. Kesälä, A. Kuronen, K. Nordlund, “Molecular dynamics simulation of pressure dependence of cluster growth in inert gas condensation”, Phys. Rev. B, 75:17 (2007), 174121 | DOI

[12] A. E. Korenchenko, A. G. Vorontsov, B. R. Gel'chinskii, “Statistical analysis of formation and relaxation of atomic clusters based on data of molecular-dynamic modeling of gas-phase nucleation of metallic nanoparticles”, High Temperature, 54:2 (2016), 229–234 | DOI

[13] Frishberg I. V., Kvater L. I., Kuz'min B. P., Gribovskiy S. V., Gas-phase method of powder formation, Nauka Publ., M., 1978, 223 pp. (in Russ.)

[14] Gusev A. I., Nanomaterials, nanostructures, nanotechnologies, Fizmatlit Publ., M., 2007, 416 pp. (in Russ.)

[15] Matveev A. N., Molecular physics, Lan' publ., Spb., 2010, 364 pp. (in Russ.)