Ab initio studies of hydrogen physisorption on clear and Li-doped carbon nanotubes
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 2, pp. 64-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The hydrogen adsorption on internal and external surfaces of clear and Li-doped carbon nanotubes of different radii are investigated to assess the effects of concavity and doping on hydrogen uptake and binding energy. We make density functional calculations with the exchange-correlation functionals PBE and CA. Modeling of H$_2$ adsorption on clear carbon tubes shows that only in case of internal sorption on narrow (5,5) nanotube energy of adsorption fall within the desirable range of 300-400 meV per H$_2$ molecule. But in this case hydrogen uptake is too low and constitutes about 1,6 wt %. Doping with Li atom increases the adsorption energy of hydrogen molecule by 30–100 meV and in case of external sorption this energy enlarges several times. Nevertheless, the optimal range of binding energy can be achieved only in case of hydrogen adsorption inside quite narrow (5,5) and (7,7) Li-doped nanotubes.
Keywords: lithium sorption, first-principles calculations, density functional theory.
Mots-clés : carbon nanotubes, hydrogen adsorption
@article{VYURM_2017_9_2_a7,
     author = {E. V. Anikina and V. P. Beskachko},
     title = {Ab initio studies of hydrogen physisorption on clear and {Li-doped} carbon nanotubes},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {64--71},
     year = {2017},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a7/}
}
TY  - JOUR
AU  - E. V. Anikina
AU  - V. P. Beskachko
TI  - Ab initio studies of hydrogen physisorption on clear and Li-doped carbon nanotubes
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2017
SP  - 64
EP  - 71
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a7/
LA  - en
ID  - VYURM_2017_9_2_a7
ER  - 
%0 Journal Article
%A E. V. Anikina
%A V. P. Beskachko
%T Ab initio studies of hydrogen physisorption on clear and Li-doped carbon nanotubes
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2017
%P 64-71
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a7/
%G en
%F VYURM_2017_9_2_a7
E. V. Anikina; V. P. Beskachko. Ab initio studies of hydrogen physisorption on clear and Li-doped carbon nanotubes. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 2, pp. 64-71. http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a7/

[1] Dutta S., “A review on production, storage of hydrogen and its utilization as an energy resource”, Journal of Industrial and Engineering Chemistry, 20:4 (2014), 1148–1156 | DOI

[2] Sakintuna B., Yürüm Y., “Templated porous carbons: a review article”, Industrial engineering chemistry research, 44:9 (2005), 2893–2902 | DOI

[3] Oriňáková R, Oriňák A., “Recent applications of carbon nanotubes in hydrogen production and storage”, Fuel, 90:11 (2011), 3123–3140 | DOI

[4] Kajiura H., Tsutsui S., Kadono K., Kakuta M., Ata M., Murakami Y., “Hydrogen storage capacity of commercially available carbon materials at room temperature”, Applied physics letters, 82:7 (2003), 1105–1107 | DOI

[5] Ansoñ A., Callejas M. A., Benito A. M., Maser W. K., Izquierdo M. T., Rubio B., Jagiello J., Thommes M., Parra J. B., Martıñez M. T., “Hydrogen adsorption studies on single wall carbon nanotubes”, Carbon, 42:7 (2004), 1243–1248 | DOI

[6] Hoang T. K.A., Antonelli D. M., “Exploiting the Kubas interaction in the design of hydrogen storage materials”, Advanced Materials, 21:18 (2009), 1787–1800 | DOI

[7] Pumera M., “Graphene-based nanomaterials for energy storage”, Energy Environmental Science, 4:3 (2011), 668–674 | DOI

[8] Sun Q., Jena P., Wang Q., Marquez M., “First-principles study of hydrogen storage on Li12C60”, Journal of the American Chemical Society, 128:30 (2006), 9741–9745 | DOI

[9] Liu M., Kutana A., Liu Y., Yakobson B. I., “First-principles studies of Li nucleation on graphene”, The journal of physical chemistry letters, 5:7 (2014), 1225–1229 | DOI

[10] Sozykin S. A., Beskachko V. P., “Structure of endohedral complexes of carbon nanotubes encapsulated with lithium and sodium”, Molecular Physics, 111:7 (2013), 930–938 | DOI

[11] Sozykin S. A., Beskachko V. P., Vyatkin G. P., “The structure of carbon nanotube exohedral complexes with lithium in a wide range of concentrations”, Materials Science Forum, 870, 2016, 135–140 | DOI

[12] Soler J. M., Artacho E., Gale J. D., García A., Junquera J., “The SIESTA method for ab initio order-N materials simulation”, Journal of Physics: Condensed Matter, 14:11, pp DOI: 10 (2745) | DOI

[13] Klimeš J., Michaelides A., “Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory”, The Journal of chemical physics, 137:12 (2012), 120901 | DOI

[14] Li J., Furuta T., Goto H., Ohashi T., Fujiwara Y., Yip S., “Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures”, The Journal of chemical physics, 119:4 (2003), 2376–2385 | DOI

[15] Kostenetskiy P. S., Safonov A. Y., “SUSU Supercomputer Resources”, Proceedings of the 10th Annual International Scientific Conference on Parallel Computing Technologies, PCT 2016 (Arkhangelsk, Russia, March, 2016), CEUR Workshop Proceedings, 1576, 561–573 (in Russ.) | MR