Determination of the form of “elastic” component of the equations of state of molecular crystals
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 2, pp. 55-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper analyzers the diagram of atom-atom potentials as exemplified by calculation of energy of the molecular crystal lattice of nitro compounds. The performed in the paper calculations of energy of the crystal lattice of a number of nitro compounds have shown that the calculation data coincide with the experiment only when an electrostatic interaction between molecules is taken into account in the diagram of atom-atom potentials. The obtained results allowed us to create a potential for description of an elastic component of the internal energy and pressure in the two-term state equation of the molecular crystal. The accounting of electrostatic energy has lead to the fact the in the Buckingham potential when describing the attraction energy an unknown parameter, i.e. a power coefficient for specific volume of the crystal, appears. On the whole, there are four parameters in the potential for description of the elastic component of the internal energy and pressure. These parameters are determined from experimental data. The analysis of experimental data on thermodynamic measurements has shown that the most adequate description of the elastic component of the internal energy and pressure in the two-term state equation of molecular crystals can be received only when the potential of intermolecular interactions closes on the isothermal compressibility or sound speed at the temperature of the crystal tending to zero. The consecutive passage to the limit in terms of the isothermal sound velocity for the crystal temperature, tending to zero, allowed us to get a rather simple potential for description of the elastic component of the internal energy and pressure, expression of which includes an explicitly isothermal sound speed. This approach enables us to reduce the number of unknown parameters to two, which are specified according to experimental shock adiabats.
Keywords: state equation, molecular crystal, Helmholtz energy, Lennard–Jones potential, Buckingham potential, Einstein approximation.
Mots-clés : Debye approximation
@article{VYURM_2017_9_2_a6,
     author = {Yu. M. Kovalev},
     title = {Determination of the form of {\textquotedblleft}elastic{\textquotedblright} component of the equations of state of molecular crystals},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {55--63},
     year = {2017},
     volume = {9},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a6/}
}
TY  - JOUR
AU  - Yu. M. Kovalev
TI  - Determination of the form of “elastic” component of the equations of state of molecular crystals
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2017
SP  - 55
EP  - 63
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a6/
LA  - ru
ID  - VYURM_2017_9_2_a6
ER  - 
%0 Journal Article
%A Yu. M. Kovalev
%T Determination of the form of “elastic” component of the equations of state of molecular crystals
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2017
%P 55-63
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a6/
%G ru
%F VYURM_2017_9_2_a6
Yu. M. Kovalev. Determination of the form of “elastic” component of the equations of state of molecular crystals. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 2, pp. 55-63. http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a6/

[1] Stanyukovich K. P., Unsteady motion of the continuum, Nauka Publ., M., 1971, 756 pp. (in Russ.)

[2] Zharkov V. N., Kalinin V. A., State equations at high temperatures and pressure, Nauka Publ., M., 1968, 311 pp. (in Russ.)

[3] Kitaygorodskiy A. I., Molecular crystals, Nauka Publ., M., 1971, 424 pp. (in Russ.)

[4] Kovalev Yu. M., Shlyapochnikov V. A., “Crystal lattice energy of nitro compounds”, Russian Chemical Bulletin, 28:11 (1979), 2416–2417 | DOI

[5] Klark T., Computer chemistry, Mir, M., 1990, 384 pp. (in Russ.)

[6] Harrison W. A., Pseudopotentials in the theory of metals, Benjamin, New York, 1966, 336 pp.

[7] Reissland J. A., The Physics of Phonons, Wiley, London–New York, 1973, 319 pp.

[8] S. L. Mayo, B. D. Olafson, W. A. Goddard, “Dreiding: A general force field for molecular simulation”, J. Phys. Chem., 94:26 (1990), 8897–8909 | DOI

[9] B. M. Dobrats, P. C. Crawford, LLNL Explosives Handbook. Properties of Chemical Explosives and Explosive Simulants, University of California, Livermore, California, 1985

[10] T. R. Gibbs, A. Popolato, Last explosive property data, Los Alamos series on dynamic material properties, University of California Press, Berkeley–Los Angeles–London, 1980

[11] Kovalev Yu. M., “Mathematical Modelling of the Thermal Component of the Equation of State of Molecular Crystals. Bulletin of the South Ural State University”, Series Mathematical Modelling, Programming Computer Software, 6:1 (2013), 34–42

[12] Kovalev Yu. M., Belik A. V., “Determination of the thermal component of the equations of state of molecular crystals”, Chelyabinskiy fiziko-matematicheskiy zhurnal, 2013, no. 9 (300), 5–10 (in Russ.)

[13] Girifalco L. A., Statistical Physics of Materials, John Wiley Sons Inc, 1973, 362 pp.