Mots-clés : parabolic equation
@article{VYURM_2017_9_2_a1,
author = {Ya. T. Mehraliev and A. N. Safarova},
title = {On one nonlocal inverse boundary problem for the second-order parabolic equation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {13--21},
year = {2017},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a1/}
}
TY - JOUR AU - Ya. T. Mehraliev AU - A. N. Safarova TI - On one nonlocal inverse boundary problem for the second-order parabolic equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2017 SP - 13 EP - 21 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a1/ LA - ru ID - VYURM_2017_9_2_a1 ER -
%0 Journal Article %A Ya. T. Mehraliev %A A. N. Safarova %T On one nonlocal inverse boundary problem for the second-order parabolic equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2017 %P 13-21 %V 9 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a1/ %G ru %F VYURM_2017_9_2_a1
Ya. T. Mehraliev; A. N. Safarova. On one nonlocal inverse boundary problem for the second-order parabolic equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 2, pp. 13-21. http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a1/
[1] Gordeziani D. G., Avalishvili G. A., Matematicheskoe modelirovanie, 12:1 (2000), 94–103 (in Russ.) | Zbl
[2] Bitsadze A. V., Samarskiy A. A., DAN SSSR, 85:4 (1969), 739–740 (in Russ.)
[3] Gordeziani D. G., Seminar of the Institute of Applied Mathematics at Tbilisi University, 2, 1970, 38–40 (in Russ.)
[4] Gordeziani D. G., Dzhioev D. Z., “On the solvability of a boundary value problem for a nonlinear equation of elliptic type”, Communication of AN GSSR, 68:4 (1972), 289–292 (in Russ.) | Zbl
[5] Kapustin N. Yu., Moiseev E. I., “Convergence of spectral expansions for functions of the holder class for two problems with a spectral parameter in the boundary condition”, Differential Equations, 36:8 (2000), 1182–1188 | DOI | MR | Zbl
[6] Moiseev E. I., Kapustin N. Yu., Doklady akademii nauk, 385:1 (2002), 20–24 (in Russ.) | Zbl
[7] Khudaverdiev K. I., Veliev A. A., The study of one-dimensional mixed problem for one class of quasi-hyperbolic third-order equations with a nonlinear operator right side, Chashyogly Publ., Baku, 2010, 168 pp. (in Russ.)