Mots-clés : viscous liquid
@article{VYURM_2017_9_2_a0,
author = {K. M. Gamzaev},
title = {Numerical method for solving a nonlocal problem on pipeline transportation of viscous liquid},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--12},
year = {2017},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a0/}
}
TY - JOUR AU - K. M. Gamzaev TI - Numerical method for solving a nonlocal problem on pipeline transportation of viscous liquid JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2017 SP - 5 EP - 12 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a0/ LA - ru ID - VYURM_2017_9_2_a0 ER -
%0 Journal Article %A K. M. Gamzaev %T Numerical method for solving a nonlocal problem on pipeline transportation of viscous liquid %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2017 %P 5-12 %V 9 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a0/ %G ru %F VYURM_2017_9_2_a0
K. M. Gamzaev. Numerical method for solving a nonlocal problem on pipeline transportation of viscous liquid. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 2, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a0/
[1] Lur'e M. V., Mathematical modeling of processes of oil, oil products and gas pipeline transportation, Neft i gaz Publ., M., 2003, 336 pp. (in Russ.)
[2] Leonov E. G., Isaev V. I., Aerohydromechanics in drilling, Nedra Publ., M., 1987, 304 pp. (in Russ.)
[3] Basniev K. S., Dmitriev N. M., Rozenberg G. D., Oil and gas fluid mechanics, Institut kompiuternykh issledovanii Publ., M.–Izhevsk, 2005, 544 pp. (in Russ.)
[4] Loitsianskii L. G., Mechanics of liquid and gas, Nauka Publ., M., 1987, 840 pp. (in Russ.)
[5] Rabinovich E. Z., Hydraulics, Nedra Publ., M., 1980, 278 pp. (in Russ.)
[6] Shlikhting G., Boundary layer theory, Nauka Publ., M., 1969, 711 pp. (in Russ.)
[7] C. Neto, D. Evans, E. Bonaccurso, “Boundary slip in Newtonian liquids: a review of experimental studies”, Reports on Progress in Physics, 68:12 (2005), 2859–2897 | DOI
[8] E. Lauga, M.P. Brenner, H.A. Stone, “Microfluidics: the no-slip boundary condition”, Handbook of Experimental Fluid Dynamics, Springer, New York, 2006, 1219–1240 | DOI
[9] Yankov V. I., Processing of fiber-forming polymers. Basics of polymer rheology and flow of polymers in channels, NITs “Regulyarnaya i khaoticheskaya dinamika”, Institut komp'yuternykh issledovaniy Publ., M.–Izhevsk, 2008, 264 pp. (in Russ.)
[10] I. J. Rao, K. R. Rajagopal, “The effect of the slip boundary condition on the flow of fluids in a channel”, Acta Mechanica, 135 (1999), 113–126 | DOI | MR | Zbl
[11] Borzenko E. I., Diakova O. A., Shrager G. R., “Studying the slip phenomenon for a viscous fluid flow in a curved channel”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 2(28), 35–44 (in Russ.)
[12] J. Volker, “Slip with friction and penetration with resistance boundary conditions for the Navier–Stokes equation — numerical tests and aspects of the implementation”, J. Computational and Applied Mechanics, 147:2 (2002), 287–300 | DOI | MR | Zbl
[13] J. R. Cannon, “The solution of heat equation subject to the specification of energy”, Quart. Appl. Math., 21:2 (1963), 155–160 | DOI | MR
[14] Ionkin N. I., Differentsial'nye uravneniya, 13:2 (1977), 294–304 (in Russ.) | Zbl
[15] Samarskiy A. A., Differentsial'nye uravneniya, 16:11 (1980), 1925–1935 (in Russ.)
[16] Nakhusheva V. A., Differential equations of mathematical models of nonlocal processes, Nauka Publ., M., 2006, 173 pp. (in Russ.)
[17] Samarskiy A. A., Theory of difference schemes, Nauka Publ., M., 1989, 616 pp. (in Russ.)
[18] Samarskiy A. A., Vabishchevich P. N., Numerical methods of solving inverse problems of mathematical physics, LKI Publ., M., 2009, 480 pp. (in Russ.)