Numerical method for solving a nonlocal problem on pipeline transportation of viscous liquid
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 2, pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with a process of unsteady axisymmetric flow of incompressible viscous liquid in the cylindrical pipeline, described by the nonlinear system of Navier–Stokes differential equations. The set of equations is transformed into one linear parabolic equation with an initial and natural boundary condition on the pipeline axis. We face a problem for determining velocity distribution in a cross-section of the pipeline based on the desired law of time variation of the pressure drop along the pipeline. As in case of liquid flow in pipes it's practically impossible to define interaction models of fluid with a solid boundary, the boundary condition on the pipe wall is considered as unknown. For the problem accuracy an additional condition in the form of integral flow characteristic is specified. In other words, the law of time variation of volumetric flow rate in the pipeline is specified. This problem is related to nonlocal problems with an integral condition for partial differential equations. The specified integral condition is differentiated in time and the obtained ratio with the help of the differential equation is transformed into a local boundary condition. As a result, the set task is altered to a direct problem with local conditions. The finite difference method is applied for numerical solution of the boundary value problem. For this purpose, we create a discrete analog of the problem in the form of an implicit difference scheme using the integral method. A computational algorithm of solving the obtained difference equation system is suggested. Numerical experiments for test problems have been conducted to check the efficiency of practical application of the suggested computational algorithm. The computational algorithm has also been tried on the data of steady flow of viscous incompressible liquid in the pipeline.
Keywords: pipeline transportation, axisymmetric flow, non-local problem with integral condition, finite difference method.
Mots-clés : viscous liquid
@article{VYURM_2017_9_2_a0,
     author = {K. M. Gamzaev},
     title = {Numerical method for solving a nonlocal problem on pipeline transportation of viscous liquid},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--12},
     year = {2017},
     volume = {9},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a0/}
}
TY  - JOUR
AU  - K. M. Gamzaev
TI  - Numerical method for solving a nonlocal problem on pipeline transportation of viscous liquid
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2017
SP  - 5
EP  - 12
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a0/
LA  - ru
ID  - VYURM_2017_9_2_a0
ER  - 
%0 Journal Article
%A K. M. Gamzaev
%T Numerical method for solving a nonlocal problem on pipeline transportation of viscous liquid
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2017
%P 5-12
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a0/
%G ru
%F VYURM_2017_9_2_a0
K. M. Gamzaev. Numerical method for solving a nonlocal problem on pipeline transportation of viscous liquid. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 2, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2017_9_2_a0/

[1] Lur'e M. V., Mathematical modeling of processes of oil, oil products and gas pipeline transportation, Neft i gaz Publ., M., 2003, 336 pp. (in Russ.)

[2] Leonov E. G., Isaev V. I., Aerohydromechanics in drilling, Nedra Publ., M., 1987, 304 pp. (in Russ.)

[3] Basniev K. S., Dmitriev N. M., Rozenberg G. D., Oil and gas fluid mechanics, Institut kompiuternykh issledovanii Publ., M.–Izhevsk, 2005, 544 pp. (in Russ.)

[4] Loitsianskii L. G., Mechanics of liquid and gas, Nauka Publ., M., 1987, 840 pp. (in Russ.)

[5] Rabinovich E. Z., Hydraulics, Nedra Publ., M., 1980, 278 pp. (in Russ.)

[6] Shlikhting G., Boundary layer theory, Nauka Publ., M., 1969, 711 pp. (in Russ.)

[7] C. Neto, D. Evans, E. Bonaccurso, “Boundary slip in Newtonian liquids: a review of experimental studies”, Reports on Progress in Physics, 68:12 (2005), 2859–2897 | DOI

[8] E. Lauga, M.P. Brenner, H.A. Stone, “Microfluidics: the no-slip boundary condition”, Handbook of Experimental Fluid Dynamics, Springer, New York, 2006, 1219–1240 | DOI

[9] Yankov V. I., Processing of fiber-forming polymers. Basics of polymer rheology and flow of polymers in channels, NITs “Regulyarnaya i khaoticheskaya dinamika”, Institut komp'yuternykh issledovaniy Publ., M.–Izhevsk, 2008, 264 pp. (in Russ.)

[10] I. J. Rao, K. R. Rajagopal, “The effect of the slip boundary condition on the flow of fluids in a channel”, Acta Mechanica, 135 (1999), 113–126 | DOI | MR | Zbl

[11] Borzenko E. I., Diakova O. A., Shrager G. R., “Studying the slip phenomenon for a viscous fluid flow in a curved channel”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 2(28), 35–44 (in Russ.)

[12] J. Volker, “Slip with friction and penetration with resistance boundary conditions for the Navier–Stokes equation — numerical tests and aspects of the implementation”, J. Computational and Applied Mechanics, 147:2 (2002), 287–300 | DOI | MR | Zbl

[13] J. R. Cannon, “The solution of heat equation subject to the specification of energy”, Quart. Appl. Math., 21:2 (1963), 155–160 | DOI | MR

[14] Ionkin N. I., Differentsial'nye uravneniya, 13:2 (1977), 294–304 (in Russ.) | Zbl

[15] Samarskiy A. A., Differentsial'nye uravneniya, 16:11 (1980), 1925–1935 (in Russ.)

[16] Nakhusheva V. A., Differential equations of mathematical models of nonlocal processes, Nauka Publ., M., 2006, 173 pp. (in Russ.)

[17] Samarskiy A. A., Theory of difference schemes, Nauka Publ., M., 1989, 616 pp. (in Russ.)

[18] Samarskiy A. A., Vabishchevich P. N., Numerical methods of solving inverse problems of mathematical physics, LKI Publ., M., 2009, 480 pp. (in Russ.)