Variations in number of lightning discharge radio pulses by observations in Yakutsk
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 1, pp. 57-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main natural source of very low-frequency radiation (LFR: 3–30 kHz) is a lightning discharge which generates radio pulses, namely atmospherics. The atmospherics were registered in the period from 2001–2015 30 km away from Yakutsk (62N; 129,72 E) in the context of industrial noise-free environment. A receive path corresponds to a band of ground lightning discharge's energy concentration: 0,3–10 kHz. The threshold level of a field, received by a frame antenna $\sim$2 mV/m, which provides an opportunity to register radio pulses at night propagation conditions is up to $\sim$6 000 km. The specific period of a daily variation: minimum 3–7 UT (minimum thunderstorm activity, maximum radio signal attenuation); the summer maximum 8–12 UT (influence of local thunderstorms, maximum signal attenuation); the winter and summer maximum 15–19 UT (minimum attenuation in radio signal propagation). The variation of maximums 17 h (UT) – 230 % (summer to winter) and 9 h (UT) — 2 600 % (local thunderstorms in summer). The 11-year variation is a half-wave with the maximum of 1 year earlier than the minimum of solar activity. The flow of atmospherics is in an antiphase with the solar activity and in a phase with the variation of cosmic rays. From the maximum to the minimum of the solar activity (2001–2007) the change of radio pulse flow 3–7 UT has comprised 59 and 13 times; 15–19 UT comprised 38 and 5 times; 8–12 UT comprised 34 and 8 in winter and summer, respectively. According to our observations, by registering radio signals of a radio navigation system RSDN-20, in the radio path Novosibirsk–Yakutsk the change of attenuation from the minimum to the maximum of the solar activity is 120 %. Taking into account the propagation, the ratio between the number of atmospherics, accepted in the minimum of the solar activity (2009) and the maximum (2013) for summer months is 159 %.
Keywords: atmospherics, thunderstorm activity, solar activity, galactic cosmic rays.
Mots-clés : radio wave propagation
@article{VYURM_2017_9_1_a6,
     author = {V. I. Kozlov and A. A. Korsakov and L. D. Tarabukina and N. S. Duiukova},
     title = {Variations in number of lightning discharge radio pulses by observations in {Yakutsk}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {57--64},
     year = {2017},
     volume = {9},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a6/}
}
TY  - JOUR
AU  - V. I. Kozlov
AU  - A. A. Korsakov
AU  - L. D. Tarabukina
AU  - N. S. Duiukova
TI  - Variations in number of lightning discharge radio pulses by observations in Yakutsk
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2017
SP  - 57
EP  - 64
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a6/
LA  - ru
ID  - VYURM_2017_9_1_a6
ER  - 
%0 Journal Article
%A V. I. Kozlov
%A A. A. Korsakov
%A L. D. Tarabukina
%A N. S. Duiukova
%T Variations in number of lightning discharge radio pulses by observations in Yakutsk
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2017
%P 57-64
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a6/
%G ru
%F VYURM_2017_9_1_a6
V. I. Kozlov; A. A. Korsakov; L. D. Tarabukina; N. S. Duiukova. Variations in number of lightning discharge radio pulses by observations in Yakutsk. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 1, pp. 57-64. http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a6/

[1] Remizov L. T., Natural interference, Nauka Publ., M., 1985, 196 pp. (in Russ.)

[2] Aleksandrov M. S., “The study of atmospheric radio interference VLF and LF bands and their sources”, Uspekhi sovremennoy radioelektroniki, 1998, no. 10, 3–25 (in Russ.)

[3] Panyukov A. V., Buduev D. V., Malov D. N., “Passive monitoring systems of thunderstorm”, Vestnik YuUrGU. Seriya “Matematika, fizika, khimiya”, 8(24):4 (2003), 11–20 (in Russ.) | Zbl

[4] Panyukov A. V., “Mathematical and software support of distributed network of thunderstorm pelengation and distance measuring”, Proceedings of the VI Russian Conference on Atmospheric Electricity (Nizhniy Novgorod, October 1–7, 2007), IPF RAN, Publ., Nizhniy Novgorod, 255–256 (in Russ.)

[5] Panyukov A. V., Bogushov A. K., “The Spectral Statistical Method for Determining the Location Parameters of a Dipole Source of Electromagnetic Radiation”, Radiophysics and Quantum Electronics, 59:4 (2016), 278–288 | DOI

[6] Likhter Ya. I., Geomagnetizm i aeronomiya, 6:4 (1966), 795–796 (in Russ.)

[7] Kleymenova Z. P., Metrologiya i gidrologiya, 1967, no. 8, 64–68 (in Russ.)

[8] V. A. Mullayarov, V.I. Kozlov, R.R. Karimov, “Effect of variations in the solar-wind parameters on thunderstorm activity”, Geomagnetism and Aeronomy, 49:8 (2009), 1299–1301 | DOI

[9] C. A. McKerrow, “Some Measurements of Atmospheric Noise at Low and Very Low Frequencies in Canada”, Journal of Geophysical Research, 65:7 (1960), 1911–1926 | DOI

[10] Kozlov V. I., Fedorova G. V., Shabaganova S. N., Vestnik Yakutskogo gosudarstvennogo universiteta, 6:4 (2009), 29–34 (in Russ.)

[11] Karimov R. R., Kozlov V. I., Korsakov A. A., Mullayarov V. A., Melchinov V. P., “Variations of very low frequency signal parameters of radio navigation stations, registrated in Yakutsk”, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 9:4 (2012), 57–62 (in Russ.) | Zbl

[12] M. L. Hutchins, R. H. Holzworth, J. B. Brundell, C. J. Rodger, “Relative detection efficiency of the World Wide Lightning Location Network”, Radio Sci., 47 (2012), RS6005, 9 pp. | DOI

[13] N. R. Thomson, M. A. Clilverd, “Solar cycle changes in daytime VLF subionospheric attenuation”, Journal of Atmospheric and Solar-Terrestrial Physics, 62:7 (2000), 601–608 | DOI

[14] C. J. Scott, R. G. Harrison, M. J. Owens et al., “Evidence for solar wind modulation of lightning”, Environmental Research Letters, 9:5 (2014), 055004, 12 pp. | DOI

[15] E. Williams, A. Guha, R. Boldi et al., Global Circuit Response to the 11-Year Solar Cycle: Changes in Source or in Medium?, XV International Conference on Atmospheric Electricity (ICAE 2014) (15–20 June 2014, Norman, Oklahoma, U.S.A.)

[16] D. Siingh, P. R. Kumar, M. N. Kulkarni, “Lightning, convective rain and solar activity — Over the South/Southeast Asia”, Atmospheric Research, 120–121 (2013), 99–111 | DOI

[17] F. B. Pereira, G. Priyadarsini, T. E. Girish, A possible relationship between global warming and lightning activity in India during the period 1998–2009, arXiv: 1012.3338 [physics.gen-ph]