@article{VYURM_2017_9_1_a4,
author = {S. P. Shary},
title = {Strong compatability in data fitting problems with interval data},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {39--48},
year = {2017},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a4/}
}
TY - JOUR AU - S. P. Shary TI - Strong compatability in data fitting problems with interval data JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2017 SP - 39 EP - 48 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a4/ LA - ru ID - VYURM_2017_9_1_a4 ER -
%0 Journal Article %A S. P. Shary %T Strong compatability in data fitting problems with interval data %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2017 %P 39-48 %V 9 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a4/ %G ru %F VYURM_2017_9_1_a4
S. P. Shary. Strong compatability in data fitting problems with interval data. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 1, pp. 39-48. http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a4/
[1] Voshchinin A. P., Industrial laboratory. Materials diagnostics, 68:1 (2002), 118–126 (in Russ.)
[2] Voshchinin A. P., Proceedings of the International Conference on Computational Mathematics, Meeting “Interval mathematics and methods of constraint propagation” IMRO-2004, Working meetings, IVMiMG SO RAN Publ., Novosibirsk, 2004, 147–158
[3] Tutubalin V. N., Probability Theory: A Short Course, scientific and methodological notes, MGU Publ., M., 1972, 230 pp. (in Russ.)
[4] Gorban' I. I., Phenomenon of statistical stability, Naukova dumka, Kiev, 2014, 444 pp.
[5] Kramer G., Mathematical Methods of Statistics, Mir Publ., M., 1975, 648 pp.
[6] Alimov Yu. I., Alternative to the method of mathematical statistics, Znanie Publ., M., 1980, 64 pp. (in Russ.)
[7] Alimov Yu. I., Kravtsov Yu. A., Is probability a ‘normal’ physical quantity?, Sov. Phys. Usp., 35:7 (1992), 606–622 | DOI | DOI
[8] Tutubalin V. N., Limits of applicability (probability and statistical methods and their possibilities), Znanie Publ., M., 1977, 64 pp.
[9] Tutubalin V. N., “Probability, computers, and processing the experimental data”, Phys. Usp., 36:7 (1993), 628–641 | DOI | DOI
[10] Kantorovich L. V., Sibirskiy matematicheskiy zhurnal, 3:5 (1962), 701–709 (in Russ.)
[11] Lidov M. L., “Minimax methods for estimation”, Keldysh Institute preprints, 2010, 071, 87 pp. (in Russ.)
[12] Spivak S. I., Timoshenko V. I., Slin'ko M. G., Doklady Akademii Nauk, 192:3 (1970), 580–582 (in Russ.)
[13] Spivak S. I., Kantor O. G., Yunusova D. S., Kuznetsov S. I., Kolesov S. V., “Evaluation of measurement accuracy and significance for linear models”, Inform. Primen., 9:1 (2015), 87–97 | DOI
[14] Voshchinin A. P., Bochkov A. F., Sotirov G. R., Zavodskaya laboratoriya. Diagnostika materialov, 56:7 (1990), 76–81 (in Russ.)
[15] Oskorbin N. M., Maksimov A. V., Zhilin S. I., Izvestiya Altayskogo gosudarstvennogo universiteta, 1998, no. 1, 37–40 (in Russ.)
[16] Zhilin S. I., Non-statistical models and methods for construction and analysis of dependencies, Cand. phys. and math. sci. diss., AltGU Publ., Barnaul, 2004, 119 pp.
[17] S. I. Zhilin, “On fitting empirical data under interval error”, Reliable Computing, 11:5 (2005), 433–442 | DOI | MR | Zbl
[18] S. I. Zhilin, “Simple method for outlier detection in fitting experimental data under interval error”, Chemometrics and Intellectual Laboratory Systems, 88:1 (2007), 60–68 | DOI
[19] Polyak B. T., Nazin S. A., “Estimation of Parameters in Linear Multidimensional Systems under Interval Uncertainty”, Journal of Automation and Information Sciences, 38:2 (2006), 19–33 | DOI
[20] F. C. Schweppe, “Recursive state estimation: unknown but bounded errors and system inputs”, IEEE Trans. Autom. Control, AC-13:1 (1968), 22–28 | DOI
[21] Jaulin L., Kieffer M., Didrit O., Walter E., Applied Interval Analysis, RKhD Publ., M.–Izhevsk, 2007, 468 pp.
[22] Milanese M., Norton J., Piet-Lahanier H., Walter E. (eds.), Bounding approaches to system identification, Plenum Press, New York, 1996, 567 pp. | DOI | MR | Zbl
[23] Shary S. P., “Solvability of interval linear equations and data analysis under uncertainty”, Automation and Remote Control, 73:2 (2012), 310–322 | DOI | MR | Zbl
[24] Shary S. P., Sharaya I. A., “Recognizing solvability of interval equations and its application to data analysis”, Journal of Computational Technologies, 18:3 (2013), 80–109 (in Russ.)
[25] S. P. Shary, “Maximum consistency method for data fitting under interval uncertainty”, Journal of Global Optimization, 66:1 (2016), 111–126 | DOI | MR | Zbl
[26] V. Kreinovich, S. P. Shary, “Interval methods for data fitting under uncertainty: a probabilistic treatment”, Reliable Computing, 23 (2016), 105–140 | MR
[27] S. P. Shary, “Solving the linear interval tolerance problem”, Mathematics and Computers in Simulation, 39 (1995), 53–85 | DOI | MR
[28] Shary S. P., “An interval linear tolerance problem”, Automation and Remote Control, 65:10 (2004), 1653–1666 | DOI | MR | Zbl
[29] Shary S. P., The finite-dimensional interval analysis, XYZ Publ., Novosibirsk, 2016, 606 pp. (in Russ.)
[30] J. Rohn, A handbook of results on interval linear problems, Czech Academy of Sciences, Prague, 2005, 80 pp. http://www.nsc.ru/interval/Library/Surveys/ILinProblems.pdf
[31] Sharaya I. A., “Structure of the tolerable solution set of an interval linear system”, Journal of Computational Technologies, 10:5 (2005), 103–119 (in Russ.) | Zbl
[32] http://www.nsc.ru/interval/Programing/MCodes/tolsolvty.m
[33] M. W. Gutowski, “Interval experimental data fitting”, Focus on Numerical Analysis, Nova Science Publishers, New York, 2006, 27–70