Strong compatability in data fitting problems with interval data
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 1, pp. 39-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The data fitting problem is a popular and practically important problem in which a functional dependency between “input” and “output” variables is to be constructed from the given empirical data. Real-life data are almost always inaccurate, and we have to deal with the measurement uncertainty. Traditionally, when processing the measurement results, models of probability theory are used, which are not always adequate to the situations under study. An alternative way to describe data inaccuracy is to use methods of interval analysis, based on specifying interval bounds of the measurement results. Data fitting problems under interval uncertainty are being solved for about half a century. Most studies in this field rely on the concept of compatibility between parameters and measurement data in which any measurement result is a kind of a large point “inflated” to a box (rectangular parallelepiped with facets parallel to the coordinate axes). That the graph of the constructed function passes through such a “point” means a nonempty intersection of the graph with the box. However, in some problems, this natural concept turns out to be unsatisfactory. In this work, for the data fitting under interval uncertainty, we introduce the concept of strong compatibility between data and parameters. It is adequate to the situations when measurements of input and output variables are broken in time, and we strive to uniformly take into account the interval results of output measurements. The paper gives a practical interpretation of the new concept. It is shown that the modified formulation of the problem reduces to recognition and further estimation of the so-called tolerable solution set to interval systems of equations constructed from the processed data.
Keywords: data fitting problem, compatibility between data and parameters, strong compatibility, interval linear equation system, tolerable solution set.
@article{VYURM_2017_9_1_a4,
     author = {S. P. Shary},
     title = {Strong compatability in data fitting problems with interval data},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {39--48},
     year = {2017},
     volume = {9},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a4/}
}
TY  - JOUR
AU  - S. P. Shary
TI  - Strong compatability in data fitting problems with interval data
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2017
SP  - 39
EP  - 48
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a4/
LA  - ru
ID  - VYURM_2017_9_1_a4
ER  - 
%0 Journal Article
%A S. P. Shary
%T Strong compatability in data fitting problems with interval data
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2017
%P 39-48
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a4/
%G ru
%F VYURM_2017_9_1_a4
S. P. Shary. Strong compatability in data fitting problems with interval data. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 1, pp. 39-48. http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a4/

[1] Voshchinin A. P., Industrial laboratory. Materials diagnostics, 68:1 (2002), 118–126 (in Russ.)

[2] Voshchinin A. P., Proceedings of the International Conference on Computational Mathematics, Meeting “Interval mathematics and methods of constraint propagation” IMRO-2004, Working meetings, IVMiMG SO RAN Publ., Novosibirsk, 2004, 147–158

[3] Tutubalin V. N., Probability Theory: A Short Course, scientific and methodological notes, MGU Publ., M., 1972, 230 pp. (in Russ.)

[4] Gorban' I. I., Phenomenon of statistical stability, Naukova dumka, Kiev, 2014, 444 pp.

[5] Kramer G., Mathematical Methods of Statistics, Mir Publ., M., 1975, 648 pp.

[6] Alimov Yu. I., Alternative to the method of mathematical statistics, Znanie Publ., M., 1980, 64 pp. (in Russ.)

[7] Alimov Yu. I., Kravtsov Yu. A., Is probability a ‘normal’ physical quantity?, Sov. Phys. Usp., 35:7 (1992), 606–622 | DOI | DOI

[8] Tutubalin V. N., Limits of applicability (probability and statistical methods and their possibilities), Znanie Publ., M., 1977, 64 pp.

[9] Tutubalin V. N., “Probability, computers, and processing the experimental data”, Phys. Usp., 36:7 (1993), 628–641 | DOI | DOI

[10] Kantorovich L. V., Sibirskiy matematicheskiy zhurnal, 3:5 (1962), 701–709 (in Russ.)

[11] Lidov M. L., “Minimax methods for estimation”, Keldysh Institute preprints, 2010, 071, 87 pp. (in Russ.)

[12] Spivak S. I., Timoshenko V. I., Slin'ko M. G., Doklady Akademii Nauk, 192:3 (1970), 580–582 (in Russ.)

[13] Spivak S. I., Kantor O. G., Yunusova D. S., Kuznetsov S. I., Kolesov S. V., “Evaluation of measurement accuracy and significance for linear models”, Inform. Primen., 9:1 (2015), 87–97 | DOI

[14] Voshchinin A. P., Bochkov A. F., Sotirov G. R., Zavodskaya laboratoriya. Diagnostika materialov, 56:7 (1990), 76–81 (in Russ.)

[15] Oskorbin N. M., Maksimov A. V., Zhilin S. I., Izvestiya Altayskogo gosudarstvennogo universiteta, 1998, no. 1, 37–40 (in Russ.)

[16] Zhilin S. I., Non-statistical models and methods for construction and analysis of dependencies, Cand. phys. and math. sci. diss., AltGU Publ., Barnaul, 2004, 119 pp.

[17] S. I. Zhilin, “On fitting empirical data under interval error”, Reliable Computing, 11:5 (2005), 433–442 | DOI | MR | Zbl

[18] S. I. Zhilin, “Simple method for outlier detection in fitting experimental data under interval error”, Chemometrics and Intellectual Laboratory Systems, 88:1 (2007), 60–68 | DOI

[19] Polyak B. T., Nazin S. A., “Estimation of Parameters in Linear Multidimensional Systems under Interval Uncertainty”, Journal of Automation and Information Sciences, 38:2 (2006), 19–33 | DOI

[20] F. C. Schweppe, “Recursive state estimation: unknown but bounded errors and system inputs”, IEEE Trans. Autom. Control, AC-13:1 (1968), 22–28 | DOI

[21] Jaulin L., Kieffer M., Didrit O., Walter E., Applied Interval Analysis, RKhD Publ., M.–Izhevsk, 2007, 468 pp.

[22] Milanese M., Norton J., Piet-Lahanier H., Walter E. (eds.), Bounding approaches to system identification, Plenum Press, New York, 1996, 567 pp. | DOI | MR | Zbl

[23] Shary S. P., “Solvability of interval linear equations and data analysis under uncertainty”, Automation and Remote Control, 73:2 (2012), 310–322 | DOI | MR | Zbl

[24] Shary S. P., Sharaya I. A., “Recognizing solvability of interval equations and its application to data analysis”, Journal of Computational Technologies, 18:3 (2013), 80–109 (in Russ.)

[25] S. P. Shary, “Maximum consistency method for data fitting under interval uncertainty”, Journal of Global Optimization, 66:1 (2016), 111–126 | DOI | MR | Zbl

[26] V. Kreinovich, S. P. Shary, “Interval methods for data fitting under uncertainty: a probabilistic treatment”, Reliable Computing, 23 (2016), 105–140 | MR

[27] S. P. Shary, “Solving the linear interval tolerance problem”, Mathematics and Computers in Simulation, 39 (1995), 53–85 | DOI | MR

[28] Shary S. P., “An interval linear tolerance problem”, Automation and Remote Control, 65:10 (2004), 1653–1666 | DOI | MR | Zbl

[29] Shary S. P., The finite-dimensional interval analysis, XYZ Publ., Novosibirsk, 2016, 606 pp. (in Russ.)

[30] J. Rohn, A handbook of results on interval linear problems, Czech Academy of Sciences, Prague, 2005, 80 pp. http://www.nsc.ru/interval/Library/Surveys/ILinProblems.pdf

[31] Sharaya I. A., “Structure of the tolerable solution set of an interval linear system”, Journal of Computational Technologies, 10:5 (2005), 103–119 (in Russ.) | Zbl

[32] http://www.nsc.ru/interval/Programing/MCodes/tolsolvty.m

[33] M. W. Gutowski, “Interval experimental data fitting”, Focus on Numerical Analysis, Nova Science Publishers, New York, 2006, 27–70