Mots-clés : identification, test for concordance.
@article{VYURM_2017_9_1_a3,
author = {A. N. Tyrsin},
title = {The method of selecting the best distribution law for continuous random variables on the basis of inverse mapping},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {31--38},
year = {2017},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a3/}
}
TY - JOUR AU - A. N. Tyrsin TI - The method of selecting the best distribution law for continuous random variables on the basis of inverse mapping JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2017 SP - 31 EP - 38 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a3/ LA - ru ID - VYURM_2017_9_1_a3 ER -
%0 Journal Article %A A. N. Tyrsin %T The method of selecting the best distribution law for continuous random variables on the basis of inverse mapping %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2017 %P 31-38 %V 9 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a3/ %G ru %F VYURM_2017_9_1_a3
A. N. Tyrsin. The method of selecting the best distribution law for continuous random variables on the basis of inverse mapping. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 1, pp. 31-38. http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a3/
[1] Korolyuk V. S., Portenko N. I., Skorokhod A. V., Turbin A. F., Handbook of Probability Theory and Mathematical Statistics, Nauka Publ., M., 1985, 640 pp. (in Russ.)
[2] Lemeshko B. Yu., Metrologiya, 2004, no. 7, 8–17 (in Russ.)
[3] Kendall M., Stuart A., Statistical inference and communication, Nauka Publ., M., 1973, 899 pp. (in Russ.)
[4] Cramer H., Mathematical Methods of Statistics, Mir Publ., M., 1975, 648 pp. (in Russ.)
[5] Lehmann E., Testing of Statistical Hypotheses, Nauka Publ., M., 1979, 408 pp. (in Russ.)
[6] Wilks S., Mathematical Statistics, Nauka Publ., M., 1967, 632 pp. (in Russ.)
[7] Ivchenko G. I., Medvedev Yu. I., Introduction to Mathematical Statistics, LKI Publ., M., 2010, 600 pp. (in Russ.)
[8] Tarasenko F. P., Nonparametric statistics, Izd-vo TGU Publ., Tomsk, 1976, 294 pp. (in Russ.)
[9] Katkovnik V. Ya., Non-parametric identification and data smoothing, Nauka Publ., M., 1985, 336 pp. (in Russ.)
[10] Devroy L., D'erfi L., Nonparametric density estimation (The $L_1$-approach), Mir Publ., M., 1988, 408 pp. (in Russ.)
[11] Karandeev D. A., Eysymont I. M., Upravlenie bol'shimi sistemami, 1 (1998), 48–57 (in Russ.)
[12] Yashin A. V., Lotonov M. A., Izmeritel'naya tekhnika, 2003, no. 3, 3–5 (in Russ.)
[13] Novitskiy P. V., Fundamentals of information theory of measurement devices, Energiya Publ., L., 1968, 248 pp. (in Russ.)
[14] Klyavin I. A., Tyrsin A. N., Avtometriya, 49:1 (2013), 18–25 (in Russ.)
[15] Magnus Ya. R., Katyshev P. K., Peresetskiy A. A., Econometrics. Initial course, Delo Publ., M., 2004, 576 pp. (in Russ.)
[16] Panyukov A. V., Tyrsin A. N., Izvestiya Chelyabinskogo nauchnogo tsentra, 2007, no. 1(35), 6–11 (in Russ.)
[17] Ermakov S. M., The Monte Carlo method and related questions, Nauka Publ., M., 1975, 472 pp. (in Russ.)
[18] Lemeshko B. Yu., Pomadin S. S., Sib. Zh. Ind. Mat., 5:3 (2002), 115–130 (in Russ.)