@article{VYURM_2017_9_1_a2,
author = {M. A. Sagadeeva},
title = {Degenerate flows of solving operators for nonstationary {Sobolev} type equations},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {22--30},
year = {2017},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a2/}
}
TY - JOUR AU - M. A. Sagadeeva TI - Degenerate flows of solving operators for nonstationary Sobolev type equations JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2017 SP - 22 EP - 30 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a2/ LA - ru ID - VYURM_2017_9_1_a2 ER -
%0 Journal Article %A M. A. Sagadeeva %T Degenerate flows of solving operators for nonstationary Sobolev type equations %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2017 %P 22-30 %V 9 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a2/ %G ru %F VYURM_2017_9_1_a2
M. A. Sagadeeva. Degenerate flows of solving operators for nonstationary Sobolev type equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 1, pp. 22-30. http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a2/
[1] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operator, VSP, Utrecht–Boston, 2003, 216 pp. | DOI | MR
[2] Demidenko G. V., Uspenskii S. V., Partial Differential Equations and Systems not Solvable with Respect to the Highest-order Derivative, Marcel Dekker Inc., New York–Basel–Hong Kong, 2003, 239 pp. | DOI | MR | Zbl
[3] N. Sidorov, B. Loginov, A. Sinithyn, M. Falaleev, Lyapunov–Shmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 548 pp. | DOI | MR
[4] Zamyshlyaeva A. A., Linear Sobolev Type Equations of Hihg Order, Publishing center of SUSU, Chelyabinsk, 2012, 107 pp. (in Russ.)
[5] Manakova N. A., Problems of Optimal Control for the Semilinear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2012, 88 pp. (in Russ.)
[6] Matveeva O. P., Sukacheva T. G., Mathematical Models of the Non-zero Order Viscoelastic Incompressible Fluids, Publishing center of SUSU, Chelyabinsk, 2014, 101 pp. (in Russ.)
[7] Zagrebina S. A., Sagadeeva M. A., Stable and Unstable Manifolds of Solutions to Nonlinear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2016, 121 pp. (in Russ.)
[8] Keller A. V., “Numerical Solutions of the Optimal Control Theory for Degenerate Linear System of Equations with Showalter–Sidorov Initial Conditions”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2008, no. 27(127), 50–56 (in Russ.)
[9] Keller A. V., Numerical Investigation of the Optimal Control Problem for Leontief Type Models, Dr. phys. and math. sci. diss., Chelyabinsk, 2011, 237 pp.
[10] Granovskii V. A., Dynamic measurements. Fundamentals of metrology provision, L., 1984, 224 pp. (in Russ.)
[11] Shestakov A. L., Methods of the automat control theory to dynamical measurements, Publishing center of SUSU, Chelyabinsk, 2013, 257 pp. (in Russ.)
[12] Shestakov A. L., Sviridyuk G. A., “A New Approach to Measurement of Dynamically Distorted Signals”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2010, no. 16(192), 116–120 (in Russ.)
[13] A. L. Shestakov, G. A. Sviridyuk, A. V. Keller, “Theory of Optimal Measurements”, Journal of Computational and Engineering Mathematics, 1:1 (2014), 3–15
[14] Keller A. V., Al-Delfi J. K., “Holomorphic Degenerate Groups of Operators in Quasi-Banach Spaces”, Bulletin of the South Ural State University. Series: Mathematics, Mechanics, Physics, 7:1 (2015), 20–27 (in Russ.)
[15] Zamyshlyaeva A. A., Al-Isawi J. K. T., “On Some Properties of Solutions to One Class of Evolution Sobolev Type Mathematical Models in Quasi-Sobolev Spaces”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:4 (2015), 113–119 | DOI | Zbl
[16] Sagadeeva M. A., Hasan F. L., “Bounded Solutions of Barenblatt–Zheltov–Kochina Model in Quasi-Sobolev Spaces”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:4 (2015), 138–144 | DOI | Zbl
[17] Sviridyuk G. A., Manakova N. A., “The Dynamical Models of Sobolev Type with Showalter–Sidorov Condition and Additive “Noise””, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:1 (2014), 90–103 (in Russ.) | DOI
[18] A. Favini, G. A. Sviridyuk, A.A. Zamyshlyaeva, “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | MR | Zbl
[19] Sviridyuk G. A., Sukacheva T. G., “Phase Spaces of a Class of Operator Semilinear Equations of Sobolev Type”, Differential Equations, 26:2 (1990), 188–195 | MR | Zbl
[20] A. Shestakov, G. Sviridyuk, M. Sagadeeva, “Reconstruction of a Dynamically Distorted Signal with Respect to the Measure Transducer Degradation”, Applied Mathematical Sciences, 8:41–44 (2014), 2125–2130 | DOI
[21] Afanasiev S. N., The Initial and Boundary Value Problems for the Singular Abstract Differential Equations, Cand. phys. and math. sci. diss., Voronezh, 2004, 105 pp.