Degenerate flows of solving operators for nonstationary Sobolev type equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 1, pp. 22-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Research of stationary Sobolev type equations were the basis for the study of a variety of different problems, such as optimal control problem, Leontief type system, the optimal measurement problems, etc. Nonstationary Sobolev type equations have been studied only in fragments. In this article the methods required to find solutions to such equations are substantiated. Namely, we investigate degenerate flows of solving operators with which shows the solvability of initial value problems for nonstationary equations of Sobolev type.
Keywords: relatively bounded operator, degenerate groups of operators, Cauchy problem, Showalter–Sidorov problem.
@article{VYURM_2017_9_1_a2,
     author = {M. A. Sagadeeva},
     title = {Degenerate flows of solving operators for nonstationary {Sobolev} type equations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {22--30},
     year = {2017},
     volume = {9},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a2/}
}
TY  - JOUR
AU  - M. A. Sagadeeva
TI  - Degenerate flows of solving operators for nonstationary Sobolev type equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2017
SP  - 22
EP  - 30
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a2/
LA  - ru
ID  - VYURM_2017_9_1_a2
ER  - 
%0 Journal Article
%A M. A. Sagadeeva
%T Degenerate flows of solving operators for nonstationary Sobolev type equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2017
%P 22-30
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a2/
%G ru
%F VYURM_2017_9_1_a2
M. A. Sagadeeva. Degenerate flows of solving operators for nonstationary Sobolev type equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 1, pp. 22-30. http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a2/

[1] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operator, VSP, Utrecht–Boston, 2003, 216 pp. | DOI | MR

[2] Demidenko G. V., Uspenskii S. V., Partial Differential Equations and Systems not Solvable with Respect to the Highest-order Derivative, Marcel Dekker Inc., New York–Basel–Hong Kong, 2003, 239 pp. | DOI | MR | Zbl

[3] N. Sidorov, B. Loginov, A. Sinithyn, M. Falaleev, Lyapunov–Shmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 548 pp. | DOI | MR

[4] Zamyshlyaeva A. A., Linear Sobolev Type Equations of Hihg Order, Publishing center of SUSU, Chelyabinsk, 2012, 107 pp. (in Russ.)

[5] Manakova N. A., Problems of Optimal Control for the Semilinear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2012, 88 pp. (in Russ.)

[6] Matveeva O. P., Sukacheva T. G., Mathematical Models of the Non-zero Order Viscoelastic Incompressible Fluids, Publishing center of SUSU, Chelyabinsk, 2014, 101 pp. (in Russ.)

[7] Zagrebina S. A., Sagadeeva M. A., Stable and Unstable Manifolds of Solutions to Nonlinear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2016, 121 pp. (in Russ.)

[8] Keller A. V., “Numerical Solutions of the Optimal Control Theory for Degenerate Linear System of Equations with Showalter–Sidorov Initial Conditions”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2008, no. 27(127), 50–56 (in Russ.)

[9] Keller A. V., Numerical Investigation of the Optimal Control Problem for Leontief Type Models, Dr. phys. and math. sci. diss., Chelyabinsk, 2011, 237 pp.

[10] Granovskii V. A., Dynamic measurements. Fundamentals of metrology provision, L., 1984, 224 pp. (in Russ.)

[11] Shestakov A. L., Methods of the automat control theory to dynamical measurements, Publishing center of SUSU, Chelyabinsk, 2013, 257 pp. (in Russ.)

[12] Shestakov A. L., Sviridyuk G. A., “A New Approach to Measurement of Dynamically Distorted Signals”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2010, no. 16(192), 116–120 (in Russ.)

[13] A. L. Shestakov, G. A. Sviridyuk, A. V. Keller, “Theory of Optimal Measurements”, Journal of Computational and Engineering Mathematics, 1:1 (2014), 3–15

[14] Keller A. V., Al-Delfi J. K., “Holomorphic Degenerate Groups of Operators in Quasi-Banach Spaces”, Bulletin of the South Ural State University. Series: Mathematics, Mechanics, Physics, 7:1 (2015), 20–27 (in Russ.)

[15] Zamyshlyaeva A. A., Al-Isawi J. K. T., “On Some Properties of Solutions to One Class of Evolution Sobolev Type Mathematical Models in Quasi-Sobolev Spaces”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:4 (2015), 113–119 | DOI | Zbl

[16] Sagadeeva M. A., Hasan F. L., “Bounded Solutions of Barenblatt–Zheltov–Kochina Model in Quasi-Sobolev Spaces”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:4 (2015), 138–144 | DOI | Zbl

[17] Sviridyuk G. A., Manakova N. A., “The Dynamical Models of Sobolev Type with Showalter–Sidorov Condition and Additive “Noise””, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:1 (2014), 90–103 (in Russ.) | DOI

[18] A. Favini, G. A. Sviridyuk, A.A. Zamyshlyaeva, “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | MR | Zbl

[19] Sviridyuk G. A., Sukacheva T. G., “Phase Spaces of a Class of Operator Semilinear Equations of Sobolev Type”, Differential Equations, 26:2 (1990), 188–195 | MR | Zbl

[20] A. Shestakov, G. Sviridyuk, M. Sagadeeva, “Reconstruction of a Dynamically Distorted Signal with Respect to the Measure Transducer Degradation”, Applied Mathematical Sciences, 8:41–44 (2014), 2125–2130 | DOI

[21] Afanasiev S. N., The Initial and Boundary Value Problems for the Singular Abstract Differential Equations, Cand. phys. and math. sci. diss., Voronezh, 2004, 105 pp.