@article{VYURM_2017_9_1_a0,
author = {S. I. Bastrakov and N. Yu. Zolotykh},
title = {On the dynamic problem of computing generators of a polyhedral cone},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--12},
year = {2017},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a0/}
}
TY - JOUR AU - S. I. Bastrakov AU - N. Yu. Zolotykh TI - On the dynamic problem of computing generators of a polyhedral cone JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2017 SP - 5 EP - 12 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a0/ LA - ru ID - VYURM_2017_9_1_a0 ER -
%0 Journal Article %A S. I. Bastrakov %A N. Yu. Zolotykh %T On the dynamic problem of computing generators of a polyhedral cone %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2017 %P 5-12 %V 9 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a0/ %G ru %F VYURM_2017_9_1_a0
S. I. Bastrakov; N. Yu. Zolotykh. On the dynamic problem of computing generators of a polyhedral cone. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 9 (2017) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2017_9_1_a0/
[1] Chernikov S. N., Linear inequalities, Nauka Publ., M., 1968, 488 pp. (in Russ.)
[2] Emelichev V. A., Kovalev M. M., Kravtsov M. K., Polyhedrons, graphs, optimization, Nauka Publ., M., 1981, 344 pp. (in Russ.)
[3] Schrijver A., Theory of Linear and Integer Programming, Wiley, New York, 1986, 471 pp. | DOI | MR | Zbl
[4] Ziegler G. M., Lectures on Polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, Berlin–New York, 1995, 373 pp. | DOI | MR | Zbl
[5] Motzkin T. S., Raiffa H., Thompson G. L., Trall R. M., “The Double Description Method”, Contributions to the Theory of Games, v. 2, Princeton University Press, 1953, 51–74 | DOI
[6] Chernikova N. V., “Algorithm for finding a general formula for the non-negative solutions of a system of linear inequalities”, USSR Computational Mathematics and Mathematical Physics, 5:2 (1965), 228–233 | DOI | MR
[7] D. Avis, K. Fukuda, “A Pivoting Algorithm for Convex Hull and Vertex Enumeration of Arrangements and Polyhedra”, Discrete and Computational Geometry, 8:3 (1992), 295–313 | DOI | MR | Zbl
[8] B. Chazelle, “An Optimal Convex Hull Algorithm in Any Fixed Dimension”, Discrete and Computational Geom., 10:4 (1993), 377–409 | DOI | MR | Zbl
[9] C. B. Barber, D. P. Dobkin, H. Huhdanpaa, “The Quickhull Algorithm for Convex Hulls”, ACM Transactions on Mathematical Software, 22:4 (1996), 469–483 | DOI | MR | Zbl
[10] D. Bremner, K. Fukuda, A. Marzetta, “Primal-Dual Methods for Vertex and Facet Enumeration”, Discrete and Computational Geometry, 20:3 (1998), 333–357 | DOI | MR | Zbl
[11] Shevchenko V. N., Gruzdev D. V., “A modification of the Fourier–Motskin algorithm for constructing a triangulation”, Diskretnyy analiz i issledovanie operatsiy, Ser. 2, 10:1 (2003), 53–64 (in Russ.)
[12] Panyukov A. V., Gorbik V. V., “The parallel simplex-method achievements for errorless solving of linear programming problems”, Bulletin of South Ural State University. Series: Mathematical Modelling, Programming Computer Software, 25(242):9 (2011), 107–118 (in Russ.) | Zbl
[13] Panyukov A. V., “The Linear Inequalities Set Representation of Minkovski's Sum for Two Polyhedrons”, Bulletin of South Ural State University. Series: Mathematical Modelling, Programming Computer Software, 40(299):14 (2012), 108–119 (in Russ.) | Zbl
[14] Panyukov A. V., Golodov V. A., “Approach to Solve the Set of Linear Algrebraic Equations with Interval Uncertainty of Data Given”, Bulletin of South Ural State University. Series: Mathematical Modelling, Programming Computer Software, 6:2 (2013), 108–119 (in Russ.)
[15] G. Amato, F. Scozzari, E. Zaffanella, “Efficient Constraint/Generator Removal from Double Description of Polyhedra”, Electronic Notes in Theoretical Computer Science, 307 (2014), 3–15 | DOI | MR | Zbl
[16] P. Cousot, N. Halbwachs, “Automatic discovery of linear restraints among variables of a program”, Conference Record of the Fifth Annual ACM Symposium on Principles of Programming Languages, 1978, 84–96 | DOI
[17] R. Bagnara, P.M. Hill, E. Zaffanella, “Applications of polyhedral computations to the analysis and verification of hardware and software systems”, Theoretical Computer Science, 410 (2009), 4672–4691 | DOI | MR | Zbl
[18] D. Avis, D. Bremner, R. Seidel, How Good are Convex Hull Algorithms?, Computational Geometry, 7:5–6 (1997), 265–301 | DOI | MR | Zbl
[19] E. Burger, “Über homogene lineare Ungleihungssysteme”, Zeitschrift Angewandte Math. Mehanik, 36:3–4 (1956), 135–139 | DOI | MR | Zbl
[20] K. Fukuda, A. Prodon, “Double Desription Method Revisited”, Lecture Notes in Computer Science, 1120, 1996, 91–111 | DOI | MR
[21] M. Terzer, J. Stelling, “Accelerating the Computation of Elementary Modes Using Pattern Trees”, Lecture Notes in Computer Science, 4175, 2006, 333–343 | DOI | MR
[22] Zolotykh N. Yu., “New modification of the double description method for constructing the skeleton of a polyhedral cone”, Journal of Computational mathematics and Mathematical Physics, 52:1 (2012), 146–156 | DOI | MR | Zbl
[23] Bastrakov S. I., Algorithmic issues of double description of a convex polyhedron, Cand. phys. and math. sci. diss., Nizhniy Novgorod, 2016, 100 pp. (in Russ.)
[24] D. Bremner, “Incremental Convex Hull Algorithms Are Not Output Sensitive”, Discrete and Computational Geometry, 21:1 (1999), 57–68 | DOI | MR | Zbl