Determining the optimal modeling parameters for maximum precise calculations of energy in BCC-iron
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 63-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The ab initial modeling of the equilibrium structure and properties of BCC-iron is performed in the new version (11.1) of WIEN2k software package. A full-potential method of linear joined plane waves LAPW is used for the calculations, taking into account the generalized gradient approximation PBE-GGA, in supercell consisted of $54$ iron atoms with periodic boundary conditions. This is the most accurate method used in the framework of density functional theory. Integration into the reciprocal space and calculation of electron density is held in accordance with the Monkhorst–Pack scheme with a grid of $N_k$ points in the Brillouin zone. The criterion for the convergence in all the calculations is to achieve the accuracy of the calculation of the total energy of the system, charge and force of interaction between two atoms of not less than $10^{-4}$Ry, $10^{-3}e$ and $1$ mRy/a.u. respectively. The optimal values of the basic simulation parameters of carbon impurities in the BCC-iron are determined. They allow calculating the energy performance of the system with an accuracy of not less than $0,01$ eV. These parameters compile $N_k = 64$ points, $K_{\mathrm{max}} = 5$ a.u.$^{-1}$. It is shown that the use of the simulation parameters obtained in previous versions of WIEN2k leads to the error in determining the carbon dissolving power in BCC-iron at $0,07$ eV. The calculation of energy of dissolution of carbon atoms in the ferromagnetic phase of BCC-iron is conducted using the obtained simulation parameters. It amounts to $0,85\pm0,01$ eV, which is a good fit to the experimental results and other first-principle calculations.
Mots-clés : BCC-iron
Keywords: paramagnetic state, ab initio modeling, carbon impurities, WIEN2k, LAPW method.
@article{VYURM_2016_8_4_a7,
     author = {Ya. M. Ridnyi and A. A. Mirzoev and D. A. Mirzaev},
     title = {Determining the optimal modeling parameters for maximum precise calculations of energy in {BCC-iron}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {63--69},
     year = {2016},
     volume = {8},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a7/}
}
TY  - JOUR
AU  - Ya. M. Ridnyi
AU  - A. A. Mirzoev
AU  - D. A. Mirzaev
TI  - Determining the optimal modeling parameters for maximum precise calculations of energy in BCC-iron
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 63
EP  - 69
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a7/
LA  - ru
ID  - VYURM_2016_8_4_a7
ER  - 
%0 Journal Article
%A Ya. M. Ridnyi
%A A. A. Mirzoev
%A D. A. Mirzaev
%T Determining the optimal modeling parameters for maximum precise calculations of energy in BCC-iron
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 63-69
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a7/
%G ru
%F VYURM_2016_8_4_a7
Ya. M. Ridnyi; A. A. Mirzoev; D. A. Mirzaev. Determining the optimal modeling parameters for maximum precise calculations of energy in BCC-iron. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 63-69. http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a7/

[1] C. Domain, C. S. Becquart, J. Foct, “Ab initio Study of Foreign Interstitial Atom (C, N) Interactions with Intrinsic Point Defects in $\alpha$-Fe”, Physical Review B, 69:14 (2004), 144112 | DOI

[2] A. V. Ruban, “Self-trapping of carbon atoms in a-Fe during the martensitic transformation: A qualitative picture from ab initio calculations”, Physical Review B, 90 (2014), 144106 | DOI

[3] D. E. Jiang, E. A. Carter, “Carbon dissolution and diffusion in ferrite and austenite from first principles”, Physical Review B, 67 (2003), 214103 | DOI

[4] D. J. Hepburn, D. Ferguson, S. Gardner, G. J. Ackland, “First-principles study of helium, carbon, and nitrogen in austenite, dilute austenitic iron alloys, and nickel”, Physical Review B, 88 (2013), 024115 | DOI

[5] Ursaeva A. V., Ruzanova G. E., Mirzoev A. A., “Selection of optimal parameters for formation the most accurate model of BCC iron”, Bulletin of South Ural State University. Series of “Mathematics. Mechanics. Physics”, 9(185):2 (2010), 97–101 (in Russ.) | MR

[6] Rakitin M. C., Mirzoev A. A., Mirzaev D. A., “Change of electronic structure in iron containing interstitial atoms of hydrogen”, Vestnik YuUrGU. Seriya: Metalurgiya, 13(189):14 (2010), 67–71 (in Russ.)

[7] N. L. Stojica, N. L. Binggeli, “Phase stability of Fe and Mn within density-functional theory plus on-site Coulomb interaction approaches”, Journal of Magnetism and Magnetic Materials, 320 (2008), 100–106 | DOI

[8] R. Iglesias, S. L. Palacios, “Ab initio studies on the magnetic phase stability of iron”, Acta Materialia, 55 (2007), 5123–5129 | DOI

[9] H. C. Herper, E. Hoffmann, P. Entel, “Ab initio full-potential study of the structural and magnetic phase stability of iron”, Physical Review B, 60 (1999), 3839–3848 | DOI

[10] S. Cottenier, Density Functional Theory and the family of (L)APW-methods: a step-by-step introduction, , 2004 http://www.wien2k.at/reg_user/textbooks/DFT_and_LAPW-2_cottenier.pdf

[11] K. Schwarz, P. Blaha, G. K. H. Madsen, “Electronic structure calculations of solids using the WIEN2k package for material science”, Computer Physics Communications, 147 (2002), 71–76 | DOI | Zbl

[12] P. Blaha, K. Schwarz, G. Madsen et. al., An Augmented PlaneWave + Local Orbitals Program for Calculating Crystal Properties revised edition WIEN2k_11.1 (Release 5.4.2011), http://www.wien2k.at/reg_user/textbooks/usersguide.pdf

[13] L. D. Marks, “Fixed-Point Optimization of Atoms and Density in DFT”, J. Chem. Theory Comput., 9:6 (2013), 2786–2800 | DOI

[14] http://supercomputer.susu.ac.ru/computers/tornado/

[15] H. J. Monkhorst, J. D. Pack, “Special points for Brillouin-zone integrations”, Physical Review B, 13:12 (1976), 5188–5192 | DOI | MR

[16] Ridnyi Ya. M., Mirzoev A. A., Mirzaev D. A., “Ab-initio simulation of influence of short-range ordering carbon impurities on the energy of their dissolution in the FCC-iron”, Bulletin of South Ural State University. Series of “Mathematics. Mechanics. Physics”, 5:2 (2013), 108–116 (in Russ.)

[17] Mogutnov B. M., Tomilin I. A., Shvartsman L. A., Thermodynamics of ferroalloys, Metallurgiya Publ., M., 1984, 206 pp. (in Russ.)

[18] W. W. Dunn, R. B. McLellan, “The thermodynamic properties of carbon in body-centered cubic iron”, Metallurgical Transactions, 2 (1971), 1079–1086 | DOI

[19] J. A. Lobo, G. H. Geiger, “Thermodynamics and solubility of carbon in ferrite and ferritic Fe-Mo alloys”, Metallurgical Transactions A, 7A (1976), 1347–1357 | DOI

[20] M. Shumilov, A. Kozak, L. Yakushechkina, K. Sokolov, “Solubility of carbon in ferrite”, The Physics of Metals and Metallography, 47 (1973), 2169–2178

[21] E. Schlirmann, T. Schmidt, F. Tillmann, “Carburisation equilibria of alpha-iron with methane-hydrogen mixtures in the 600–800 C range and their”, Giesserei-Forschung, 19:1 (1967), 35–41