Mathematical simulation of gas-phase synthesis of metal nanoparticles in a chamber with an arc discharge
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 56-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical simulation of the metallic nanoparticles synthesis in a chamber with an arc discharge were elaborated. The efficiency of the vapor phase condensation of metallic nanoclusters and nanopowders was determined by setting optimum process parameters, the possibilities of experimental estimation of which is limited. Mathematical and physical models were developed to perform computer analysis of the vapor phase condensation to describe the macroscopic characteristics of the process (temperature regime, gas mixture dynamics, diffusion and convective transport of clusters) with allowance for the properties of the components on a microscopic level. The classical Becker–Döring–Folmer–Weber thermodynamic nucleation theory was used for the description of the probability of atom-cluster aggregation. The distributions of macroscopic (temperature, pressure, velocity field) and microscopic (cluster size distribution) values in the chamber were obtained. It is found that the size distribution function of clusters deposited on the chamber walls has two peaks, the first — in the region of small clusters ($1$$50$ atoms) and the second — for the clusters containing more than $10^4$ atoms. Based on the results of numerical calculations the assumptions are made about the relationship between the type of size distribution function and characteristics of the process.
Mots-clés : metal nanoparticles
Keywords: gas-phase synthesis, homogeneous nucleation.
@article{VYURM_2016_8_4_a6,
     author = {A. E. Korenchenko and V. Jamal Jalal},
     title = {Mathematical simulation of gas-phase synthesis of metal nanoparticles in a chamber with an arc discharge},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {56--62},
     year = {2016},
     volume = {8},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a6/}
}
TY  - JOUR
AU  - A. E. Korenchenko
AU  - V. Jamal Jalal
TI  - Mathematical simulation of gas-phase synthesis of metal nanoparticles in a chamber with an arc discharge
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 56
EP  - 62
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a6/
LA  - ru
ID  - VYURM_2016_8_4_a6
ER  - 
%0 Journal Article
%A A. E. Korenchenko
%A V. Jamal Jalal
%T Mathematical simulation of gas-phase synthesis of metal nanoparticles in a chamber with an arc discharge
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 56-62
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a6/
%G ru
%F VYURM_2016_8_4_a6
A. E. Korenchenko; V. Jamal Jalal. Mathematical simulation of gas-phase synthesis of metal nanoparticles in a chamber with an arc discharge. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 56-62. http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a6/

[1] Frishberg I. V., Kvater L. I., Kuz'min B. P., Gribovskiy S. V., Gas-phase method for obtaining powders, Nauka Publ., M., 1978, 223 pp. (in Russ.)

[2] R. C. Flagan, M. M. Lunden, “Particle structure control in nanoparticle synthesis from the vapor phase”, Mater. Sci. Eng., A204 (1995), 113 | DOI

[3] A. Simchi, R. Ahmadi, S. Reihani, A. Mahdavi, “Kinetics and mechanisms of nanoparticle formation and growth in vapor phase condensation process”, Materials and Design, 28:3 (2007), 850–856 | DOI

[4] Lerner M. I., Davydovich V. I., Svarovskaya N. V., Domashenko V. V., “Disperse characteristics of metallic nanopowders as a function of electric explosion of wire (EEW) conditions”, Nanotekhnika, 2009, no. 17, 57–60 (in Russ.)

[5] Simakin A. V., Voronov V. V., Shafeev G. A., Trudy instituta im. Prokhorova, 60 (2004), 83–106 (in Russ.)

[6] C. G. Granqvist, R. A. Buhrman, “Ultrafine metal particles”, Journal of Applied Physics, 47:5 (1976), 2200–2219 | DOI

[7] E. Kesälä, A. Kuronen, K. Nordlund, “Molecular dynamics simulation of pressure dependence of cluster growth in inert gas condensation”, Phys. Rev. B, 75 (2007), 174121 | DOI

[8] J.-Y. Raty, F. Gygi, G. Galli, “Growth of Carbon Nanotubes on Metal Nanoparticles: A Microscopic Mechanism from Ab Initio Molecular Dynamics Simulations”, Phys. Rev. Lett., 95 (2005), 096103 | DOI

[9] Vorontsov A. G., “Modeling of nucleation and grouth of metal nanoparticles during the condensation from vopour phase”, Bulletin of South Ural State University. Series of “Mathematics. Mechanics. Physics”, 22(155):1 (2009), 39–44 (in Russ.)

[10] S. Hendy, S. A. Brown, M. Hyslop, “Coalescence of nanoscale metal clusters: Molecular-dynamics study”, Phys. Rev. B, 68 (2003), 241403 | DOI

[11] R. Becker, W. Doring, “The kinetic treatment of nuclear formation in supersaturated vapors”, Ann. Phys., 24 (1935), 719–738 | DOI

[12] Zel'dovich Ya. B., ZhETF, 12 (1942), 525 (in Russ.)

[13] Lushnikov A. A., Sutugin A. G., Uspekhi khimii, 45 (1976), 385–417 (in Russ.)

[14] Fisenko S. P., “Microstructure of the Supersaturation Field in Homogeneous Nucleation in a Vapor-Gas Mixture”, Technical Physics, 58 (2013), 658–663 | DOI

[15] Korenchenko A. E., Gel'chinskiy B. R., “Mathematical simulation of the formation of metallic nanoparticles during the condensation of molten metal vapors”, Russian Metallurgy (Metally), 2011:8 (2011), 723–728 | DOI

[16] Bird R. B., Stewart W. E., Lightfoot E. N., Transport Phenomena, John Wiley Sons, 1960, 780 pp.

[17] Petrov Yu. I., Clusters and small particle, Nauka Publ., M., 1986, 367 pp. (in Russ.)