On solvability of the Hilbert homogeneous boundary value problem for quasiharmonic functions in circular domains
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 33-40
Voir la notice de l'article provenant de la source Math-Net.Ru
A Hilbert-type boundary value problem in the classes of quasi-harmonic functions is considered.
Quasi-harmonic functions are regular solutions of an elliptic differential equation form
$\frac{\partial^2W}{\partial z\partial\overline{z}}+\frac{n(n+1)}{(1+z\overline{z})^2}W=0$,
where $\frac{\partial}{\partial z}=\frac12\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)$,
$\frac{\partial}{\partial \overline{z}}=\frac12\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)$, and $n$ is a given positive integer.
Using the fact that a circle is an analytic curve, we have developed an explicit method for finding solutions
of the Hilbert homogeneous boundary value problem for quasi-harmonic functions in circular domains.
The principal logic of this method consists of two stages. At stage one we are using a representation
of quasi-harmonic function via analytic function and its derivatives to reduce the problem to the
classical Hilbert problem for some auxiliary analytic function in the circular domain. A solution $\Phi(z)$ for
this problem will be used at stage two, when we solve the linear differential Euler equation of order $n$
with the right-hand side $\Phi(z)$. General solution for the problem can be explicitly expressed in terms of
the solution of the Euler equation. Moreover, we have established that the solvability for the considered
boundary-value problem depends essentially on whether a unit circumference is the carrier of boundary
conditions or a non-unit circle.
Keywords:
boundary value problem, Hilbert-type boundary value problem, quasiharmonic function, differential equation, unit circumference, non-unit circumference.
Mots-clés : cyclic domain
Mots-clés : cyclic domain
@article{VYURM_2016_8_4_a3,
author = {K. M. Rasulov and T. I. Timofeeva},
title = {On solvability of the {Hilbert} homogeneous boundary value problem for quasiharmonic functions in circular domains},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {33--40},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a3/}
}
TY - JOUR AU - K. M. Rasulov AU - T. I. Timofeeva TI - On solvability of the Hilbert homogeneous boundary value problem for quasiharmonic functions in circular domains JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2016 SP - 33 EP - 40 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a3/ LA - ru ID - VYURM_2016_8_4_a3 ER -
%0 Journal Article %A K. M. Rasulov %A T. I. Timofeeva %T On solvability of the Hilbert homogeneous boundary value problem for quasiharmonic functions in circular domains %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2016 %P 33-40 %V 8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a3/ %G ru %F VYURM_2016_8_4_a3
K. M. Rasulov; T. I. Timofeeva. On solvability of the Hilbert homogeneous boundary value problem for quasiharmonic functions in circular domains. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 33-40. http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a3/