Mots-clés : cyclic domain
@article{VYURM_2016_8_4_a3,
author = {K. M. Rasulov and T. I. Timofeeva},
title = {On solvability of the {Hilbert} homogeneous boundary value problem for quasiharmonic functions in circular domains},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {33--40},
year = {2016},
volume = {8},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a3/}
}
TY - JOUR AU - K. M. Rasulov AU - T. I. Timofeeva TI - On solvability of the Hilbert homogeneous boundary value problem for quasiharmonic functions in circular domains JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2016 SP - 33 EP - 40 VL - 8 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a3/ LA - ru ID - VYURM_2016_8_4_a3 ER -
%0 Journal Article %A K. M. Rasulov %A T. I. Timofeeva %T On solvability of the Hilbert homogeneous boundary value problem for quasiharmonic functions in circular domains %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2016 %P 33-40 %V 8 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a3/ %G ru %F VYURM_2016_8_4_a3
K. M. Rasulov; T. I. Timofeeva. On solvability of the Hilbert homogeneous boundary value problem for quasiharmonic functions in circular domains. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 33-40. http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a3/
[1] Rasulov K. M., Conjugation method of analytic functions and some of its applications, SmolGU Publ., Smolensk, 2013, 188 pp. (in Russ.)
[2] Rasulov K. M., “The Boundary Value Problem of Hilbertin Classes of Quasiharmonic Functions in a Circle”, Izvestia of Smolensk State University, 2014, no. 4(28), 331–338 (in Russ.)
[3] K. W. Bauer, Uber eine der Differentialgleichung $(1+z\overline{z})^2W_{z\overline{z}}\pm n(n+1)W=0$ zugeordnete Funktionentheorie, Bonner Math. Schriften, 23, Math. Inst. Univ., Bonn, 1965 | MR
[4] Gakhov F. D., Boundary Value problems, Nauka Publ., M., 1977, 640 pp. (in Russ.) | MR
[5] Muskhelishvili N. I., Singular integral equations, Nauka Publ., M., 1968, 511 pp. (in Russ.) | MR
[6] Adukov V. M., Patrushev A. A., “On explicit and exact solutions of the Markushevich boundary problem for circle”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 11:2 (2011), 9–20 (in Russ.)
[7] Coddington E. A., Levinson N., Theory of Ordinary Differential Equations, Tata McGraw-Hill, 1955, 429 pp. | MR
[8] Goluzin G. M., Geometric theory of functions of a complex variable, Nauka Publ., M., 1966, 628 pp. (in Russ.) | MR