On solvability of the Hilbert homogeneous boundary value problem for quasiharmonic functions in circular domains
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 33-40

Voir la notice de l'article provenant de la source Math-Net.Ru

A Hilbert-type boundary value problem in the classes of quasi-harmonic functions is considered. Quasi-harmonic functions are regular solutions of an elliptic differential equation form $\frac{\partial^2W}{\partial z\partial\overline{z}}+\frac{n(n+1)}{(1+z\overline{z})^2}W=0$, where $\frac{\partial}{\partial z}=\frac12\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)$, $\frac{\partial}{\partial \overline{z}}=\frac12\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)$, and $n$ is a given positive integer. Using the fact that a circle is an analytic curve, we have developed an explicit method for finding solutions of the Hilbert homogeneous boundary value problem for quasi-harmonic functions in circular domains. The principal logic of this method consists of two stages. At stage one we are using a representation of quasi-harmonic function via analytic function and its derivatives to reduce the problem to the classical Hilbert problem for some auxiliary analytic function in the circular domain. A solution $\Phi(z)$ for this problem will be used at stage two, when we solve the linear differential Euler equation of order $n$ with the right-hand side $\Phi(z)$. General solution for the problem can be explicitly expressed in terms of the solution of the Euler equation. Moreover, we have established that the solvability for the considered boundary-value problem depends essentially on whether a unit circumference is the carrier of boundary conditions or a non-unit circle.
Keywords: boundary value problem, Hilbert-type boundary value problem, quasiharmonic function, differential equation, unit circumference, non-unit circumference.
Mots-clés : cyclic domain
@article{VYURM_2016_8_4_a3,
     author = {K. M. Rasulov and T. I. Timofeeva},
     title = {On solvability of the {Hilbert} homogeneous boundary value problem for quasiharmonic functions in circular domains},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {33--40},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a3/}
}
TY  - JOUR
AU  - K. M. Rasulov
AU  - T. I. Timofeeva
TI  - On solvability of the Hilbert homogeneous boundary value problem for quasiharmonic functions in circular domains
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 33
EP  - 40
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a3/
LA  - ru
ID  - VYURM_2016_8_4_a3
ER  - 
%0 Journal Article
%A K. M. Rasulov
%A T. I. Timofeeva
%T On solvability of the Hilbert homogeneous boundary value problem for quasiharmonic functions in circular domains
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 33-40
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a3/
%G ru
%F VYURM_2016_8_4_a3
K. M. Rasulov; T. I. Timofeeva. On solvability of the Hilbert homogeneous boundary value problem for quasiharmonic functions in circular domains. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 33-40. http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a3/