On the stochastic Leontief type equations with variable matrices given in terms of current velocities of the solution
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 26-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stochastic Leontief type equations are a particular case of stochastic systems of differential-algebraic type. The paper deals with the study of the system given in terms of current velocities (symmetric derivatives at an average value) of the solution. It should be noted that in a physical meaning the current velocity of stochastic processes is a direct analog of the physical velocity of deterministic process. The authors assume that the matrices of the system under consideration are rectangular time dependants and satisfy the conditions, under which the system is not solvable with respect to the symmetric derivative. In order to investigate the system of equations the authors use an approach based on the transformation of a square matrix to the canonical Jordan form and changing the metric in the space. The theorem on solution existence for stochastic Leontief type equation with current velocities under some additional conditions on its matrices of coefficients and free terms is proved.
Keywords: derivative at an average value, current velocity, Wiener process, stochastic Leontief type equation.
@article{VYURM_2016_8_4_a2,
     author = {E. Yu. Mashkov},
     title = {On the stochastic {Leontief} type equations with variable matrices given in terms of current velocities of the solution},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {26--32},
     year = {2016},
     volume = {8},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a2/}
}
TY  - JOUR
AU  - E. Yu. Mashkov
TI  - On the stochastic Leontief type equations with variable matrices given in terms of current velocities of the solution
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 26
EP  - 32
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a2/
LA  - ru
ID  - VYURM_2016_8_4_a2
ER  - 
%0 Journal Article
%A E. Yu. Mashkov
%T On the stochastic Leontief type equations with variable matrices given in terms of current velocities of the solution
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 26-32
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a2/
%G ru
%F VYURM_2016_8_4_a2
E. Yu. Mashkov. On the stochastic Leontief type equations with variable matrices given in terms of current velocities of the solution. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 26-32. http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a2/

[1] Shestakov A. L., Sviridyk G. A., “A New Approach to Measurement of Dynamically Perturbed Signals”, Bulletin of the South Ural State University, Series of “Mathematical Modelling, Programming Computer Software”, 16(192):5 (2010), 116–120 (in Russ.) | Zbl

[2] Keller A. V., Ebel' S. I., “On degenerate discrete balance dynamic model of cellular cycle”, South Ural Youth School on mathematical modeling, Proc. of All-Russian scientific-practical conference (Chelyabinsk, 2014), 74–79 (in Russ.)

[3] Keller A. V., Shishkina T. A., “The method of constructing dynamic and static balance models at the company level”, Bulletin of SUSU. Series “Economics and Management”, 7:3 (2013), 6–11 (in Russ.)

[4] E. Yu. Mashkov, “On the stochastic systems of differential-algebraic type”, Journal of Computational and Engineering Mathematics, 1:1 (2014), 34–45 | Zbl

[5] Boyarintsev Yu. E., Chistyakov V. F., Algebraic-differential systems. Solution methods and investigations, Nauka Publ., Novosibirsk, 1998, 224 pp. (in Russ.)

[6] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer-Verlag, London, 2011, 460 pp. | DOI | MR | Zbl

[7] Yu. E. Gliklikh, E. Yu. Mashkov, “Stochastic Leontieff type equations in terms of current velocities of the solution”, Journal of Computational and Engineering Mathematics, 1:2 (2014), 45–51 | MR | Zbl

[8] E. Nelson, “Derivation of the Schrodinger equation from Newtonian mechanics”, Phys. Reviews, 150:4 (1966), 1079–1085 | DOI

[9] Parthasarathy K. R., Introduction to probability and measure, Springer-Verlag, New York; Macmillan India, 1978, 312 pp. | MR

[10] Chuiko S. M., “Linear Noether boundary value problem for linear differential-algebraic system”, Computer Research and Modeling, 5:5 (2013), 769–783 (in Russ.)

[11] I. I. Gihman, A. V. Scorohod, Theory of stochastic processes, v. 3, Springer-Verlag, New York, 1979, 388 pp. | DOI | Zbl