@article{VYURM_2016_8_4_a2,
author = {E. Yu. Mashkov},
title = {On the stochastic {Leontief} type equations with variable matrices given in terms of current velocities of the solution},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {26--32},
year = {2016},
volume = {8},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a2/}
}
TY - JOUR AU - E. Yu. Mashkov TI - On the stochastic Leontief type equations with variable matrices given in terms of current velocities of the solution JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2016 SP - 26 EP - 32 VL - 8 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a2/ LA - ru ID - VYURM_2016_8_4_a2 ER -
%0 Journal Article %A E. Yu. Mashkov %T On the stochastic Leontief type equations with variable matrices given in terms of current velocities of the solution %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2016 %P 26-32 %V 8 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a2/ %G ru %F VYURM_2016_8_4_a2
E. Yu. Mashkov. On the stochastic Leontief type equations with variable matrices given in terms of current velocities of the solution. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 26-32. http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a2/
[1] Shestakov A. L., Sviridyk G. A., “A New Approach to Measurement of Dynamically Perturbed Signals”, Bulletin of the South Ural State University, Series of “Mathematical Modelling, Programming Computer Software”, 16(192):5 (2010), 116–120 (in Russ.) | Zbl
[2] Keller A. V., Ebel' S. I., “On degenerate discrete balance dynamic model of cellular cycle”, South Ural Youth School on mathematical modeling, Proc. of All-Russian scientific-practical conference (Chelyabinsk, 2014), 74–79 (in Russ.)
[3] Keller A. V., Shishkina T. A., “The method of constructing dynamic and static balance models at the company level”, Bulletin of SUSU. Series “Economics and Management”, 7:3 (2013), 6–11 (in Russ.)
[4] E. Yu. Mashkov, “On the stochastic systems of differential-algebraic type”, Journal of Computational and Engineering Mathematics, 1:1 (2014), 34–45 | Zbl
[5] Boyarintsev Yu. E., Chistyakov V. F., Algebraic-differential systems. Solution methods and investigations, Nauka Publ., Novosibirsk, 1998, 224 pp. (in Russ.)
[6] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer-Verlag, London, 2011, 460 pp. | DOI | MR | Zbl
[7] Yu. E. Gliklikh, E. Yu. Mashkov, “Stochastic Leontieff type equations in terms of current velocities of the solution”, Journal of Computational and Engineering Mathematics, 1:2 (2014), 45–51 | MR | Zbl
[8] E. Nelson, “Derivation of the Schrodinger equation from Newtonian mechanics”, Phys. Reviews, 150:4 (1966), 1079–1085 | DOI
[9] Parthasarathy K. R., Introduction to probability and measure, Springer-Verlag, New York; Macmillan India, 1978, 312 pp. | MR
[10] Chuiko S. M., “Linear Noether boundary value problem for linear differential-algebraic system”, Computer Research and Modeling, 5:5 (2013), 769–783 (in Russ.)
[11] I. I. Gihman, A. V. Scorohod, Theory of stochastic processes, v. 3, Springer-Verlag, New York, 1979, 388 pp. | DOI | Zbl