Numerical simulation of viscous fluid flow based on thermal measurements at its surface
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 17-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The viscous heat-conducting fluid flow characteristics are determined based on temperature measurements and heat flow on its daylight surface. The desired characteristics are temperature and fluid velocity in the whole model area. The problem is considered in a stationary setting and formalized as an inverse boundary problem for the model of high-viscosity incompressible fluid. A mathematical model of this fluid flow is described with the help of the Navier–Stokes equations for a Newtonian fluid in the Boussinesq approximation in a gravity field, incompressible fluid equation, and equation of the energy conservation with the appropriate boundary conditions. The fluid density and viscosity depend on the temperature. The considered problem is incorrect and does not possess the property of stability. Therefore, a small perturbation of the initial data on the accessible part of the border leads to uncontrolled errors in the determination of the unknown quantities in the model area. Conventional classical numerical methods are not suitable for solving the problem, which is why a variation method is used for its numerical solution, which reduces the solution of the original inverse problem to a series of solutions for stable problems. The Polak–Ribiere conjugate gradient method is used to minimize a merit functional in a variation method. This method steadily solves a corresponding extremal problem. The gradient of merit functional is defined analytically as a sequential solution of the direct and conjugate boundary problems. Direct and conjugate problems are numerically solved by the classical method of finite volumes. Constructed algorithms of numerical simulation are implemented in OpenFOAM software. The calculations of model problems are done.
Mots-clés : viscous fluid
Keywords: inverse boundary problem, variation method, numerical simulation.
@article{VYURM_2016_8_4_a1,
     author = {A. I. Korotkiy and I. A. Tsepelev},
     title = {Numerical simulation of viscous fluid flow based on thermal measurements at its surface},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {17--25},
     year = {2016},
     volume = {8},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a1/}
}
TY  - JOUR
AU  - A. I. Korotkiy
AU  - I. A. Tsepelev
TI  - Numerical simulation of viscous fluid flow based on thermal measurements at its surface
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 17
EP  - 25
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a1/
LA  - ru
ID  - VYURM_2016_8_4_a1
ER  - 
%0 Journal Article
%A A. I. Korotkiy
%A I. A. Tsepelev
%T Numerical simulation of viscous fluid flow based on thermal measurements at its surface
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 17-25
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a1/
%G ru
%F VYURM_2016_8_4_a1
A. I. Korotkiy; I. A. Tsepelev. Numerical simulation of viscous fluid flow based on thermal measurements at its surface. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 17-25. http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a1/

[1] Tikhonov A. N., Arsenin V. Ya., Methods of solution for ill-posed problems, Nauka Publ., M., 1979, 288 pp. (in Russ.)

[2] Ivanov V. K., Vasin V. V., Tanana V. P., The theory of linear ill-posed problems and its applications, Nauka Publ., M., 1978, 206 pp. (in Russ.)

[3] Vasil'ev F. P., Optimization methods, Faktorial Press Publ., M., 2002, 824 pp. (in Russ.)

[4] J. Nocedal, S. J. Wright, Numerical optimization, Springer, New York, 1999, 664 pp. | MR | Zbl

[5] E. Polak, Computational methods in optimization: a unified approach, Academic Press, New York, 1971, 329 pp. | MR

[6] Ch. A. Floudas, P. M. Pardalos, Encyclopedia of optimization, Springer, New York, 2009, 4626 pp. | MR | Zbl

[7] S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Clarendon Press, Oxford, 1961, 654 pp. | DOI | MR | Zbl

[8] Landau L. D., Lifshits E. M., Hydrodynamics, Nauka, M., 1986, 736 pp. (in Russ.)

[9] Korotkiy A. I., Kovtunov D. A., “Reconstruction of boundary regimes in the inverse problem of thermal convection of a highly viscous fluid”, Tr. IMM UrO RAN, 12, no. 2, 2006, 88–97 (in Russ.)

[10] Korotkiy A. I., Starodubtseva Yu. V., Simulation of direct and inverse boundary problems for stationary models of heat and mass transfer, Izdatel'stvo Ural'skogo universiteta Publ., Ekaterinburg, 2015, 168 pp. (in Russ.)

[11] A. Ismail-Zadeh, A. Korotkii, I. Tsepelev, Data-driven numerical modelling in geodynamics: methods and applications, Springer International Publishing, Berlin, 2016, 105 pp. | DOI | MR

[12] A. Korotkii, D. Kovtunov, A. Ismail-Zadeh, I. Tsepelev, O. Melnik, “Quantitative reconstruction of thermal and dynamic characteristics of volcanic lava from surface thermal measurements”, Geophysical Journal International, 205:3 (2016), 1767–1779 | DOI

[13] http://www.openfoam.org/

[14] R. I. Issa, “Solution of implicitly discretised fluid flow equations by operator-splitting”, J. Comput. Phys., 62 (1986), 40–65 | DOI | MR | Zbl

[15] H. A. Van der Vorst, “BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems”, SIAM J. Sci. Stat. Comp., 13:2 (1992), 631–644 | DOI | MR | Zbl

[16] P. K. Sweby, “High resolution schemes using flux limiters for hyperbolic conservation laws”, J. Numer. Anal., 21 (1984), 995–1011 | DOI | MR | Zbl

[17] M. Hidaka, A. Goto, S. Umino, E. Fujita, “VTFS project: Development of the lava flow simulation code LavaSIM with a model for three-dimensional convection, spreading, and solidification”, Geochem. Geophys. Geosyst., 2005, no. 6, Q07008 | DOI