Keywords: inverse boundary problem, variation method, numerical simulation.
@article{VYURM_2016_8_4_a1,
author = {A. I. Korotkiy and I. A. Tsepelev},
title = {Numerical simulation of viscous fluid flow based on thermal measurements at its surface},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {17--25},
year = {2016},
volume = {8},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a1/}
}
TY - JOUR AU - A. I. Korotkiy AU - I. A. Tsepelev TI - Numerical simulation of viscous fluid flow based on thermal measurements at its surface JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2016 SP - 17 EP - 25 VL - 8 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a1/ LA - ru ID - VYURM_2016_8_4_a1 ER -
%0 Journal Article %A A. I. Korotkiy %A I. A. Tsepelev %T Numerical simulation of viscous fluid flow based on thermal measurements at its surface %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2016 %P 17-25 %V 8 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a1/ %G ru %F VYURM_2016_8_4_a1
A. I. Korotkiy; I. A. Tsepelev. Numerical simulation of viscous fluid flow based on thermal measurements at its surface. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 17-25. http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a1/
[1] Tikhonov A. N., Arsenin V. Ya., Methods of solution for ill-posed problems, Nauka Publ., M., 1979, 288 pp. (in Russ.)
[2] Ivanov V. K., Vasin V. V., Tanana V. P., The theory of linear ill-posed problems and its applications, Nauka Publ., M., 1978, 206 pp. (in Russ.)
[3] Vasil'ev F. P., Optimization methods, Faktorial Press Publ., M., 2002, 824 pp. (in Russ.)
[4] J. Nocedal, S. J. Wright, Numerical optimization, Springer, New York, 1999, 664 pp. | MR | Zbl
[5] E. Polak, Computational methods in optimization: a unified approach, Academic Press, New York, 1971, 329 pp. | MR
[6] Ch. A. Floudas, P. M. Pardalos, Encyclopedia of optimization, Springer, New York, 2009, 4626 pp. | MR | Zbl
[7] S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Clarendon Press, Oxford, 1961, 654 pp. | DOI | MR | Zbl
[8] Landau L. D., Lifshits E. M., Hydrodynamics, Nauka, M., 1986, 736 pp. (in Russ.)
[9] Korotkiy A. I., Kovtunov D. A., “Reconstruction of boundary regimes in the inverse problem of thermal convection of a highly viscous fluid”, Tr. IMM UrO RAN, 12, no. 2, 2006, 88–97 (in Russ.)
[10] Korotkiy A. I., Starodubtseva Yu. V., Simulation of direct and inverse boundary problems for stationary models of heat and mass transfer, Izdatel'stvo Ural'skogo universiteta Publ., Ekaterinburg, 2015, 168 pp. (in Russ.)
[11] A. Ismail-Zadeh, A. Korotkii, I. Tsepelev, Data-driven numerical modelling in geodynamics: methods and applications, Springer International Publishing, Berlin, 2016, 105 pp. | DOI | MR
[12] A. Korotkii, D. Kovtunov, A. Ismail-Zadeh, I. Tsepelev, O. Melnik, “Quantitative reconstruction of thermal and dynamic characteristics of volcanic lava from surface thermal measurements”, Geophysical Journal International, 205:3 (2016), 1767–1779 | DOI
[14] R. I. Issa, “Solution of implicitly discretised fluid flow equations by operator-splitting”, J. Comput. Phys., 62 (1986), 40–65 | DOI | MR | Zbl
[15] H. A. Van der Vorst, “BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems”, SIAM J. Sci. Stat. Comp., 13:2 (1992), 631–644 | DOI | MR | Zbl
[16] P. K. Sweby, “High resolution schemes using flux limiters for hyperbolic conservation laws”, J. Numer. Anal., 21 (1984), 995–1011 | DOI | MR | Zbl
[17] M. Hidaka, A. Goto, S. Umino, E. Fujita, “VTFS project: Development of the lava flow simulation code LavaSIM with a model for three-dimensional convection, spreading, and solidification”, Geochem. Geophys. Geosyst., 2005, no. 6, Q07008 | DOI