Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 5-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents the review of authors' results in the field of non-classical equations of mathematical physics. The theory of Sobolev-type equations of higher order is introduced. The idea is based on generalization of degenerate operator semigroups theory in case of the following equations: decomposition of spaces, splitting of operators' actions, the construction of propagators and phase spaces for a homogeneous equation, as well as the set of valid initial values for the inhomogeneous equation. The author uses a proven phase space technology for solving Sobolev type equations consisting of reduction of a singular equation to a regular one defined on some subspace of initial space. However, unlike the first order equations, there is an extra condition that guarantees the existence of the phase space. There are some examples where the initial conditions should match together if the extra condition can't be fulfilled to solve the Cauchy problem. The reduction of nonclassical equations of mathematical physics to the initial problems for abstract Sobolev type equations of high order is conducted and justified.
Keywords: nonclassical equations of mathematical physics, the Sobolev type equations of higher order, phase space, propagators.
@article{VYURM_2016_8_4_a0,
     author = {A. A. Zamyshlyaeva and G. A. Sviridyuk},
     title = {Nonclassical equations of mathematical physics. {Linear} {Sobolev} type equations of higher order},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--16},
     year = {2016},
     volume = {8},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a0/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
AU  - G. A. Sviridyuk
TI  - Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 5
EP  - 16
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a0/
LA  - en
ID  - VYURM_2016_8_4_a0
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%A G. A. Sviridyuk
%T Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 5-16
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a0/
%G en
%F VYURM_2016_8_4_a0
A. A. Zamyshlyaeva; G. A. Sviridyuk. Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 4, pp. 5-16. http://geodesic.mathdoc.fr/item/VYURM_2016_8_4_a0/

[1] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov problem as a phenomena of the Sobolev-type equations”, The Bulletin of Irkutsk State University. Series “Mathematics”, 3:1 (2010), 104–125 (in Russ.) | MR | Zbl

[2] H. Poincare, “Sur l'equilibre d'une mass fluide animee d'un mouvement de rotation”, Acta Math., 7 (1885), 259–380 | DOI | MR

[3] Sobolev S. L., “On a new problem of mathematical physics”, Izv. Akad. Nauk SSSR Ser. Mat., 18:1 (1954), 3–50 (in Russ.) | MR | Zbl

[4] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest order derivative, Marcel Dekker, Inc., N.Y.–Basel–Hong Kong, 2003, 239 pp. | DOI | MR | Zbl

[5] A. Favini, A. Yagi, Degenerate differential equations in Banach spaces, Marcel Dekker, Inc., N.Y.–Basel–Hong Kong, 1999, 313 pp. | MR | Zbl

[6] Kozhanov A. I., “On properties of solutions of one class of pseudoparabolic”, Doklady Akad. Nauk SSSR, 326:5 (1992), 781–786 (in Russ.) | Zbl

[7] R. E. Showalter, Hilbert space methods for partial differential equations, Pitman, London–San Francisco–Melbourne, 1977, 208 pp. | MR | Zbl

[8] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | DOI | MR | Zbl

[9] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, De Gruyter, 2011, 648 pp. | MR | Zbl

[10] Zamyshlyaeva A. A., Linear Sobolev type equations of high order, Publ. Center of the South Ural State University, Chelyabinsk, 2012, 107 pp. (in Russ.)

[11] Sagadeeva M. A., Dichotomy of solutions of linear Sobolev type equations, Publ. Center of the South Ural State University, Chelyabinsk, 2012, 139 pp. (in Russ.)

[12] Zagrebina S. A., Sagadeeva V. A., Stable and nonstable manifolds of solutions of semilinear Sobolev type equations, Publ. Center of the South Ural State University, Chelyabinsk, 2016, 121 pp. (in Russ.)

[13] Manakova N. A., Optimal control problem for the Sobolev type equations, Publ. Center of the South Ural State University, Chelyabinsk, 2012, 88 pp. (in Russ.)

[14] N. Sidorov, B. Loginov, A. Sinithyn, M. Falaleev, Lyapunov–Shmidt methods in nonlinear analysis and applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 568 pp. | MR

[15] Kozhanov A. I., Boundary problems for equations of mathematical physics of odd order, NGU Publ., Novosibirsk, 1990, 130 pp. (in Russ.)

[16] S. G. Pyatkov, Operator Theory. Nonclassical Problems, VSP, Utrecht–Boston–Köln–Tokyo, 2002, 346 pp. | DOI | MR | Zbl

[17] Manakova N. A., Sviridyuk G. A., “Nonclassical equations of mathematical physics. Phase spaces of semilinear Sobolev type equations”, Bulletin of South Ural State University. Series of “Mathematics. Mechanics. Physics”, 8:3 (2016), 31–51 (in Russ.)

[18] Sviridyuk G. A., Apetova T. V., “Phase spaces of linear dynamical Sobolev type equations”, Doklady Akad. Nauk, 330:6 (1993), 696 (in Russ.) | Zbl

[19] Sviridyuk G. A., Vakarina O. V., “Linear Sobolev type equations of high”, Doklady Akad. Nauk, 393:3 (1998), 308–310 (in Russ.)

[20] Zamyshlyaeva A. A., “Phase spaces of one class of linear Sobolev type equations of the second order”, Vychislitelnye tehnologii, 8:4 (2003), 45–54 (in Russ.) | MR

[21] Zamyshlyaeva A. A., “Stochastic mathematical model of ion-acoustic waves in plasma”, Natural and technical sciences (Mathematical modeling, numerical methods and program complexes), 2013, no. 4, 284–292 (in Russ.)

[22] Zamyshlyaeva A. A., “De Gennes equation of acoustic waves in smectics”, Obozrenie prikladnoy I promyshlennoy matematiki, 16:4 (2009), 655–656 (in Russ.)

[23] Zamyshlyaeva A. A., Yuzeeva A. V., “The initial-final value problem for the Boussinesque–Love equation on graph”, Izvestia Irkutskogo gosudarsvennogo universiteta. Seria “Matematika”, 3:2 (2010), 18–29 (in Russ.)

[24] Zamyshlyaeva A. A., “Sobolev type mathematical models of high order”, Bulletin of the South Ural State University. Series: Mathematical modelling, programming and computer software, 7:2 (2014), 5–28 (in Russ.) | DOI

[25] Gabov S. A., New problems of mathematical wave theory, Fizmatlit Publ., M., 1998, 448 pp. (in Russ.)

[26] Love A. E. H., A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, 1927 | Zbl

[27] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Linear and nonlinear Sobolev type equations, Fizmatlit Publ., M., 2004, 736 pp. (in Russ.)