Sections of numerical prism and Bessel polynomials
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 3, pp. 64-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The integer set previously obtained by the author in the study of moments and cumulants of three-parameter probability distribution of the hyperbolic cosine type is considered. This distribution is a generalization of Meixner two-parameter distribution. Moments of distribution at specific parameters vary as a certain class of polynomials with the corresponding coefficients. On the basis of the differential ratio of polynomials, recurrence formulas for their coefficients are received. The set of polynomial coefficients $\{U(n; k, j)\}$ that depends on three indices, and which is formed by these formulas, is the object of study. The set is structured in the form of a numeric prism. When fixing one or two indices or functional connection between the indices, different sections of numerical prisms are obtained: number triangles or number sequences. Among the sections of the numerical prism are both known (Stirling triangle, tangential numbers, secant numbers, etc.) and new integer sets. Classic Bessel triangle enters into the considered numerical prism as a section $\{U(2n-j; n, j)\}$, where $n = 0, 1, 2, \dots$, $j = 0, 1, 2, \dots n$. In this section the sequences classified as coefficients in the Bessel polynomials are determined. Based on the theoretical developments related to the Bessel polynomials, dependences and relations for a number of elements of numerical prism are found and justified. The obtained results also allow putting sequences through the values of hypergeometric functions and modified Bessel functions of the second kind. Considered set differs in the ease of construction, and its study has revealed previously unknown properties and relations of various mathematical objects (sequences, polynomials, functions, etc.), particularly related to the Bessel polynomials.
Keywords: hyperbolic cosine type distribution, numerical prism, numerical sequences, Bessel polynomials.
Mots-clés : sections
@article{VYURM_2016_8_3_a5,
     author = {M. S. Tokmachev},
     title = {Sections of numerical prism and {Bessel} polynomials},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {64--71},
     year = {2016},
     volume = {8},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a5/}
}
TY  - JOUR
AU  - M. S. Tokmachev
TI  - Sections of numerical prism and Bessel polynomials
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 64
EP  - 71
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a5/
LA  - ru
ID  - VYURM_2016_8_3_a5
ER  - 
%0 Journal Article
%A M. S. Tokmachev
%T Sections of numerical prism and Bessel polynomials
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 64-71
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a5/
%G ru
%F VYURM_2016_8_3_a5
M. S. Tokmachev. Sections of numerical prism and Bessel polynomials. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 3, pp. 64-71. http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a5/

[1] Tokmachev M. S., “Calculation of cumulants and moments of the distribution of Meixner”, Bulletin of the Novgorod state University, 2013, no. 2(75), 47–51 (in Russ.)

[2] Tokmachev M. S., The characterization of the distribution type hyperbolic cosine property of the constancy of the regression, Dep. in VINITI 21.06.94, No 1542-V94, 11 pp. (in Russ.)

[3] Tokmachev M. S., “Constancy of regression of quadratic statistics with linear statistics”, Bulletin of the Novgorod state University, 1995, no. 1, 139–141 (in Russ.)

[4] Tokmachev M. S., Tokmachev A. M., “Distribution type hyperbolic cosine”, Bulletin of the Novgorod state University, 2001, no. 17, 85–88 (in Russ.)

[5] Tokmachev M. S., “Applied aspect of the generalized hyperbolic cosine distribution”, Bulletin of the Novgorod state University, 2005, no. 34, 96–99 (in Russ.)

[6] C. D. Lai, “Meixner classes and Meixner hypergeometric distributions”, Aust. J. Stat., 24 (1982), 221–233 | DOI | MR | Zbl

[7] Tokmachev M. S., “On numerical sets and sequences in connection with the distribution type hyperbolic cosine”, Bulletin of the Novgorod state University. Ser.: Physical and mathematical Sciences, 2015, no. 3(86), part 2, 35–39 (in Russ.)

[8] T. Kim, D. S. Kim, Identities involving Bessel polynomials arising from linear differential equations, 2016, arXiv: 1602.04106 [math.NT]

[9] The On-Line Encyclopedia of Integer Sequences, , OEIS (accessed: 25.02.2016) http://www.research.att.com/ñjas/sequences/

[10] H. L. Krall, O. Fink, “A New Class of Orthogonal Polynomials: The Bessel Polynomials”, Trans. Amer. Math. Soc., 65 (1949), 100–115 | DOI | MR | Zbl

[11] L. Carlitz, “A Note on the Bessel Polynomials”, Duke Math. J., 24 (1957), 151–162 | DOI | MR | Zbl

[12] Tokmachev M. S., “Calculation of integrals of functions of some class with the probabilistic interpretation”, Bulletin of the Novgorod state University. Ser.: Physical and mathematical Sciences, 2014, no. 80, 42–46 (in Russ.) | MR