Degenerate Volterra equations of convolution type in Banach spaces and their applications
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 3, pp. 52-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the problem of unique solvability of linear integral and integral-differential Volterra equations in Banach spaces with irreversible operator in the main part. Operator-valued kernel has a special form, $K(t, s) = g(t - s)A$, where $g = g(t)$ is a numeric function, and $A$ is a linear operator. Abstract equations of this kind are very typical for applications. For the study of such equations it is possible to use structural stack theory of two linear operators, which has been developed by Professor G. A. Sviridyuk and his students. Another peculiarity of the studied problems is multiple zero of function $g = g(t)$ at the point $t = 0$. Fundamental operator-functions of considered integral and integral-differential operators in Banach spaces are constructed under the assumption of relative spectrally boundness of operator $A$ with respect to degenerated main part of equations. On this basis, theorems of unique existence of solutions in the class of distributions with left-bounded support are proved. The dependence between the order of singularity of generalized solutions and multiplicity of zero of integral kernel at the initial point is ascertained. Also we have obtained conditions under which generalized solutions are equal to the classical solutions. Theorems formulated for abstract equations are applied to the study of significant initial boundary value problems arising in plasma physics and mathematical theory of elasticity.
Keywords: relative spectral boundedness of linear operator, fundamental operator-function.
Mots-clés : distribution
@article{VYURM_2016_8_3_a4,
     author = {S. S. Orlov},
     title = {Degenerate {Volterra} equations of convolution type in {Banach} spaces and their applications},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {52--63},
     year = {2016},
     volume = {8},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a4/}
}
TY  - JOUR
AU  - S. S. Orlov
TI  - Degenerate Volterra equations of convolution type in Banach spaces and their applications
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 52
EP  - 63
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a4/
LA  - ru
ID  - VYURM_2016_8_3_a4
ER  - 
%0 Journal Article
%A S. S. Orlov
%T Degenerate Volterra equations of convolution type in Banach spaces and their applications
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 52-63
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a4/
%G ru
%F VYURM_2016_8_3_a4
S. S. Orlov. Degenerate Volterra equations of convolution type in Banach spaces and their applications. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 3, pp. 52-63. http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a4/

[1] C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 2008, 380 pp. | DOI | MR | Zbl

[2] J. Prüss, Evolutionary Integral Equations and Applications, Springer, Basel–Heidelberg–New York–Dordrecht–London, 2012, 366 pp. | DOI | MR

[3] M. Kostić, Abstract Volterra Integro-Differential Equations, CRC Press, Florida, 2015, 484 pp. | DOI | MR | Zbl

[4] Gohberg I. C., Kreĭn M. G., Theory and applications of Volterra operators in Hilbert space, Translations of Mathematical Monographs, 24, American Mathematical Society, Providence, R.I., 1970, 430 pp. | MR

[5] M. M. Lavrentiev, “Operator Volterra Equations and Integral Geometry Problems”, Journal of Inverse and Ill-Posed Problems, 6:4 (1998), 353–359 | DOI | MR

[6] Bukhgeim A. L., Volterra Equations and Inverse Problems, VSP, Utrecht–Tokyo, 1999, 204 pp. | MR

[7] Sapronov I. V., “The Volterra Equation with a Singularity in a Banach Space”, Rus. Math., 51:11 (2007), 44–54 | DOI | MR | Zbl

[8] N. D. Kopachevsky, E. V. Syomkina, “Linear Volterra Integro-Differential Second-Order Equations Unresolved with Respect to the Highest Derivative”, Eurasian Mathematical Journal, 4:4 (2013), 64–87 | MR | Zbl

[9] A. Favini, H. Tanabe, “Degenerate Volterra equations in Banach spaces”, Differential and Integral Equations, 14:5 (2001), 613–640 | MR | Zbl

[10] C. Lizama, R. Ponce, “Maximal Regularity for Degenerate Differential Equations with Infinite Delay in Periodic Vector-Valued Function Spaces”, Proceedings of the Edinburgh Mathematical Society, 56:3 (2013), 853–871 | DOI | MR | Zbl

[11] S. Q. Bu, G. Cai, “Solutions of Second Order Degenerate Integro-Differential Equations in Vector-Valued Function Spaces”, Science China Mathematics, 56:5 (2013), 1059–1072 | DOI | MR | Zbl

[12] Fedorov V. E., Stakheeva O. A., Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 19(190):36 (2014), 111–125 (in Russ.)

[13] Bulatov M. V., Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki, 42:3 (2002), 330–335 (in Russ.) | MR | Zbl

[14] Chistyakov V. F., “On Some Properties of Systems of Volterra Integral Equations of the Fourth Kind with Kernel of Convolution Type”, Math. Notes, 80:1 (2006), 109–113 | DOI | DOI | MR | Zbl

[15] Sidorov N. A., Sibirskiy matematicheskiy jurnal, 21:2 (1983), 202–203 (in Russ.)

[16] Sidorov N. A., Falaleev M. V., “Generalized Solutions of Degenerated Differential and Integral Equations in Banach Spaces”, Metod Funkciy Lyapunova v analize dinamiki sistem, Nauka, Novosibirsk, 1988, 308–318 (in Russ.)

[17] Falaleev M. V., “Fundamental Operator-Functions of Singular Differential Operators in Banach Spaces”, Sib. Math. J., 41:5 (2000), 960–973 | DOI | MR | Zbl

[18] Orlov S. S., Generalized Solutions of Degenerate Differential and Integral Equations in Banach Spaces, ISU Publ., Irkutsk, 2014, 149 pp. (in Russ.)

[19] Orlov S. S., Izvestiya irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 10 (2014), 76–92 (in Russ.)

[20] Sviridyuk G. A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl

[21] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | DOI | MR | Zbl

[22] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear Sobolev Type Equations, FizMatLit Publ., M., 2007, 736 pp. (in Russ.)

[23] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 84, Springer, New York, 1982, 356 pp. | DOI | MR | Zbl

[24] A. A. Zamyshlyaeva, A. S. Muravyev, “Computational Experiment for One Mathematical Model of Ion-Acoustic Waves”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming Computer Software, 8:2 (2015), 127–132 | DOI | Zbl

[25] A. A. Zamyshlyaeva, E. V. Bychkov, O. N. Tsyplenkova, “Mathematical models based on Boussinesq–Love equation”, Applied Mathematical Sciences, 8:110 (2014), 5477–5483 | DOI