Mots-clés : distribution
@article{VYURM_2016_8_3_a4,
author = {S. S. Orlov},
title = {Degenerate {Volterra} equations of convolution type in {Banach} spaces and their applications},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {52--63},
year = {2016},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a4/}
}
TY - JOUR AU - S. S. Orlov TI - Degenerate Volterra equations of convolution type in Banach spaces and their applications JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2016 SP - 52 EP - 63 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a4/ LA - ru ID - VYURM_2016_8_3_a4 ER -
%0 Journal Article %A S. S. Orlov %T Degenerate Volterra equations of convolution type in Banach spaces and their applications %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2016 %P 52-63 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a4/ %G ru %F VYURM_2016_8_3_a4
S. S. Orlov. Degenerate Volterra equations of convolution type in Banach spaces and their applications. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 3, pp. 52-63. http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a4/
[1] C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 2008, 380 pp. | DOI | MR | Zbl
[2] J. Prüss, Evolutionary Integral Equations and Applications, Springer, Basel–Heidelberg–New York–Dordrecht–London, 2012, 366 pp. | DOI | MR
[3] M. Kostić, Abstract Volterra Integro-Differential Equations, CRC Press, Florida, 2015, 484 pp. | DOI | MR | Zbl
[4] Gohberg I. C., Kreĭn M. G., Theory and applications of Volterra operators in Hilbert space, Translations of Mathematical Monographs, 24, American Mathematical Society, Providence, R.I., 1970, 430 pp. | MR
[5] M. M. Lavrentiev, “Operator Volterra Equations and Integral Geometry Problems”, Journal of Inverse and Ill-Posed Problems, 6:4 (1998), 353–359 | DOI | MR
[6] Bukhgeim A. L., Volterra Equations and Inverse Problems, VSP, Utrecht–Tokyo, 1999, 204 pp. | MR
[7] Sapronov I. V., “The Volterra Equation with a Singularity in a Banach Space”, Rus. Math., 51:11 (2007), 44–54 | DOI | MR | Zbl
[8] N. D. Kopachevsky, E. V. Syomkina, “Linear Volterra Integro-Differential Second-Order Equations Unresolved with Respect to the Highest Derivative”, Eurasian Mathematical Journal, 4:4 (2013), 64–87 | MR | Zbl
[9] A. Favini, H. Tanabe, “Degenerate Volterra equations in Banach spaces”, Differential and Integral Equations, 14:5 (2001), 613–640 | MR | Zbl
[10] C. Lizama, R. Ponce, “Maximal Regularity for Degenerate Differential Equations with Infinite Delay in Periodic Vector-Valued Function Spaces”, Proceedings of the Edinburgh Mathematical Society, 56:3 (2013), 853–871 | DOI | MR | Zbl
[11] S. Q. Bu, G. Cai, “Solutions of Second Order Degenerate Integro-Differential Equations in Vector-Valued Function Spaces”, Science China Mathematics, 56:5 (2013), 1059–1072 | DOI | MR | Zbl
[12] Fedorov V. E., Stakheeva O. A., Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 19(190):36 (2014), 111–125 (in Russ.)
[13] Bulatov M. V., Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki, 42:3 (2002), 330–335 (in Russ.) | MR | Zbl
[14] Chistyakov V. F., “On Some Properties of Systems of Volterra Integral Equations of the Fourth Kind with Kernel of Convolution Type”, Math. Notes, 80:1 (2006), 109–113 | DOI | DOI | MR | Zbl
[15] Sidorov N. A., Sibirskiy matematicheskiy jurnal, 21:2 (1983), 202–203 (in Russ.)
[16] Sidorov N. A., Falaleev M. V., “Generalized Solutions of Degenerated Differential and Integral Equations in Banach Spaces”, Metod Funkciy Lyapunova v analize dinamiki sistem, Nauka, Novosibirsk, 1988, 308–318 (in Russ.)
[17] Falaleev M. V., “Fundamental Operator-Functions of Singular Differential Operators in Banach Spaces”, Sib. Math. J., 41:5 (2000), 960–973 | DOI | MR | Zbl
[18] Orlov S. S., Generalized Solutions of Degenerate Differential and Integral Equations in Banach Spaces, ISU Publ., Irkutsk, 2014, 149 pp. (in Russ.)
[19] Orlov S. S., Izvestiya irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 10 (2014), 76–92 (in Russ.)
[20] Sviridyuk G. A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl
[21] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | DOI | MR | Zbl
[22] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear Sobolev Type Equations, FizMatLit Publ., M., 2007, 736 pp. (in Russ.)
[23] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 84, Springer, New York, 1982, 356 pp. | DOI | MR | Zbl
[24] A. A. Zamyshlyaeva, A. S. Muravyev, “Computational Experiment for One Mathematical Model of Ion-Acoustic Waves”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming Computer Software, 8:2 (2015), 127–132 | DOI | Zbl
[25] A. A. Zamyshlyaeva, E. V. Bychkov, O. N. Tsyplenkova, “Mathematical models based on Boussinesq–Love equation”, Applied Mathematical Sciences, 8:110 (2014), 5477–5483 | DOI