Keywords: phase space, the morphology of the phase space, Banach manifold, quasistationary trajectory, Showalter–Sidorov problem, Cauchy problem, $k$-assembly Whitney.
@article{VYURM_2016_8_3_a3,
author = {N. A. Manakova and G. A. Sviridyuk},
title = {Nonclassical equations of mathematical physics. {Phase} space of semilinear {Sobolev} type equations},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {31--51},
year = {2016},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a3/}
}
TY - JOUR AU - N. A. Manakova AU - G. A. Sviridyuk TI - Nonclassical equations of mathematical physics. Phase space of semilinear Sobolev type equations JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2016 SP - 31 EP - 51 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a3/ LA - ru ID - VYURM_2016_8_3_a3 ER -
%0 Journal Article %A N. A. Manakova %A G. A. Sviridyuk %T Nonclassical equations of mathematical physics. Phase space of semilinear Sobolev type equations %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2016 %P 31-51 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a3/ %G ru %F VYURM_2016_8_3_a3
N. A. Manakova; G. A. Sviridyuk. Nonclassical equations of mathematical physics. Phase space of semilinear Sobolev type equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 3, pp. 31-51. http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a3/
[1] Bayazitova A. A., “The Sturm–Liouville problem on geometric graph”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 16(192):5 (2010), 4–10 (in Russ.) | Zbl
[2] Bogatyreva E. A., Manakova N. A., “Numerical simulation of the process of nonequilibrium counterflow capillary imbibition”, Computational Mathematics and Mathematical Physics, 56:1 (2016), 132–139 | DOI | DOI | MR | Zbl
[3] Bokarieva T. A., Sviridyuk G. A., “Whitney folds in phase spaces of some semilinear Sobolev-type equations”, Mathematical Notes, 55:3 (1994), 237–242 | DOI | MR | Zbl
[4] Gil'mutdinova A. F., “On the non-uniqueness of solutions of Showalter–Sidorov problem for one Plotnikov model”, Vestnik of Samara State University, 2007, no. 9/1, 85–90 | MR | Zbl
[5] Dzektser E. S., “The generalization of the equations of motion of groundwater”, Dokl. Akad. Nauk SSSR, 1972, no. 5, 1031–1033 (in Russ.) | Zbl
[6] Zagrebina S. A., Sagadeeva M. A., Stable and unstable manifolds of solutions of nonlinear Sobolev type equations, Publ. Center of the South Ural State University, Chelyabinsk, 2016, 121 pp. (in Russ.)
[7] Zagrebina S. A., “The initial-finite problems for nonclassical models of mathematical physics”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6:2 (2013), 5–24 (in Russ.) | Zbl
[8] Zamyshlyaeva A. A., Linear Sobolev type equations of higher-order, Publ. Center of the South Ural State University, Chelyabinsk, 2012, 107 pp. (in Russ.) | MR
[9] Zamyshlyaeva A. A., Tsyplenkova O. N., “The optimal control over solution of the initial-finish value problem for the Boussinesque–Love equation”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 5(264):11 (2012), 13–24 (in Russ.) | Zbl
[10] Zamyshlyaeva A. A., Bychkov E. V., “The phase space of the modified Boussinesq equation”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 18(277):12 (2012), 13–19 (in Russ.) | Zbl
[11] Zamyshlyaeva A. A., Muravyev A. S., “Computational experiment for one mathematical model of ion-acoustic waves”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:2 (2015), 127–132 | DOI | Zbl
[12] Keller A. V., “The algorithm for solution of the Showalter–Sidorov problem for Leontief type models”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 4(221):7 (2011), 40–46 (in Russ.) | Zbl
[13] Korpusov M. O., Pletner Yu. D., Sveshnikov A. G., “On quasi-steady processes in conducting non-dispersive media”, Computational Mathematics and Mathematical Physics, 40:8 (2000), 1188–1199 | MR | Zbl
[14] Kuznetsov G. A., Yakupov M. M., “The phase space of the problem of convection of viscoelastic incompressible fluid”, Bulletin of the Chelyabinsk State University, 3:1 (2002), 92–103 (in Russ.) | MR | Zbl
[15] Ladyzhenskaya O. A., The mathematical theory of viscous incompressible flow, Gordon and Breach, N.Y.–London–Paris, 1969, 234 pp. | MR | Zbl
[16] Leng S., Introduction to Differentiable Manifolds, Springer, N.Y., 2002, 263 pp. | MR
[17] Oskolkov A. P., “Initial-boundary value problems for equations of motion nonlinear viscoelastic fluids”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 147 (1985), 110–119 (in Russ.) | MR | Zbl
[18] Oskolkov A. P., “Initial-boundary value problems for equations of motion of Kelvin–Voight fluids and Oldroyd fluids”, Proceedings of the Steklov Institute of Mathematics, 179 (1989), 137–182 | MR | Zbl
[19] Oskolkov A. P., “Nonlocal problems for one class of nonlinear operator equations that arise in the theory of Sobolev type equations”, Journal of Mathematical Sciences, 64:1 (1993), 724–736 | DOI | MR | Zbl
[20] Oskolkov A. P., “On stability theory for solutions of semilinear dissipative equations of the Sobolev type”, Journal of Mathematical Sciences, 77:3 (1995), 3225–3231 | DOI | MR
[21] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu. D., Linear and nonlinear the Sobolev type equations, Fizmatlit Publ., M., 2007, 736 pp. (in Russ.)
[22] Sviridyuk G. A., “The manifold of solutions of an operator singular pseudoparabolic equation”, Dokl. Akad. Nauk SSSR, 289:6 (1986), 1315–1318 (in Russ.) | MR
[23] Sviridyuk G. A., “On the manifold of solutions of a problem on the dynamics of a incompressible viscoelastic fluid”, Differential Equations, 24:10 (1988), 1846–1848 (in Russ.) | MR
[24] Sviridyuk G. A., Sukacheva T. G., “The Cauchy problem for a class of semilinear equations of Sobolev type”, Siberian Mathematical Journal, 31:5 (1991), 794–802 | DOI | MR | Zbl
[25] Sviridyuk G. A., “Phase portraits of Sobolev-type semilinear equations with a relatively strongly sectorial operator”, St. Petersburg Mathematical Journal, 6:5 (1995), 1109–1126 | MR
[26] Sviridyuk G. A., “On the general theory of operator semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl
[27] Sviridyuk G. A., “A model of dynamics of incompressible viskoelastic liquid”, Russian Mathematics (Izvestiya VUZ. Matematika), 38:1 (1994), 59–68 | MR | Zbl
[28] Sviridyuk G. A., Kliment’ev M. V., “Phase spaces of Sobolev-type equations with $s$-monotone or strongly coercive operators”, Russian Mathematics (Izvestiya VUZ. Matematika), 38:11 (1994), 72–79 | MR | Zbl
[29] Sviridyuk G. A., Yakupov M. M., “The phase space of the initial-boundary value problem for the Oskolkov system”, Differential equations, 32:11 (1996), 1535–1540 | MR | Zbl
[30] Sviridyuk G. A., Kuznetsov G. A., “Relatively strongly $p$-sectorial linear operators”, Doklady Mathematics, 59:2 (1999), 298–300 | MR | Zbl
[31] Sviridyuk G. A., Zagrebina S. A., “Verigin's problem for linear equations of the Sobolev type with relatively p-sectorial operators”, Differential Equations, 38:12 (2002), 1745–1752 | DOI | MR | Zbl
[32] Sviridyuk G. A., Kazak V. O., “The phase space of an initial-boundary value problem for the Hoff equation”, Mathematical Notes, 71:1–2 (2002), 262–266 | DOI | DOI | MR | Zbl
[33] Sviridyuk G. A., Manakova N. A., “Phase space of the Cauchy–Dirichlet problem for the Oskolkov equation of nonlinear filtration”, Russian Mathematics, 47:9 (2003), 33–38 | MR | Zbl
[34] Sviridyuk G. A., Kazak V. O., “The phase space of one generalized model of Oskolkov”, Siberian Math. J., 44:5 (2003), 1124–1131 | MR | Zbl
[35] Sviridyuk G. A., Karamova A. F., “On the crease phase space of one non-classical equations”, Differential equations, 41:10 (2005), 1476–1581 (in Russ.) | DOI | MR
[36] Sviridyuk G. A., Trineeva I. K., “A Whitney fold in the phase space of the Hoff equation”, Russian Mathematics (Izvestiya VUZ. Matematika), 49:10 (2005), 49–55 | MR
[37] Sviridyuk G. A., Shemetova V. V., “Hoff equations on graphs”, Differential Equations, 42:1 (2006), 139–145 | DOI | MR | Zbl
[38] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov problem as a phenomena of the Sobolev type equations”, The Bulletin of Irkutsk State University. Series: Mathematics, 3:1 (2010), 104–125 (In Russ.) | MR | Zbl
[39] Sviridyuk G. A., Keller A. V., “On the convergence of the numerical solution of optimal control problems for systems of Leontief type equations”, Journal of Samara State Technical University. Series Physical and Mathematical Sciences, 2011, no. 2 (23), 24–33 (In Russ.) | DOI
[40] Sviridyuk G. A., Manakova N. A., “The dynamical models of Sobolev type with Showalter–Sidorov condition and additive “noise””, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:1 (2014), 90–103 | DOI | Zbl
[41] Sukacheva T. G., “A model for the motion of incompressible viscoelastic fluid Kelvin–Voigt nonzero order”, Differential Equations, 33:4 (1997), 552–557 (in Russ.) | MR | Zbl
[42] Pokornyy Yu. V., Penkin O. M., Borovskikh A. V., Pryadiev V. L., Lazarev K. P., Shabrov S. A., Differential equations on geometrical graphs, Fizmatlit Publ., M., 2004, 272 pp. (In Russ.)
[43] Temam R., Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam–N.Y., 1979, 519 pp. | MR | MR | Zbl
[44] Shestakov A. L., Keller A. V., Nazarova E. I., “Numerical solution of the optimal measurement problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl
[45] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, Walter de Gruyter Co., Berlin, 2011, 648 pp. | MR
[46] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solved with respect to the highest order derivative, Marcel Dekker, Inc., N.Y.–Basel–Hong Kong, 2003, 239 pp. | MR
[47] A. Favini, A. Yagi, Degenerate differential equations in Banach spaces, Marcel Dekker, Inc., N. Y., 1999, 236 pp. | MR | Zbl
[48] A. Favini, G. A. Sviridyuk, N. A. Manakova, “Linear Sobolev type equations with relatively $p$-sectorial operators in space of «noises»”, Abstract and Applied Analysis, 2015 (2015), 697410, 8 pp. | DOI | MR
[49] N. J. Hoff, “Creep Buckling”, Journal of Aeronautical Sciences, 1956, no. 7, 1–20
[50] S. G. Pyatkov, Operator theory. Nonclassical problems, VSP, Utrecht–Boston–Koln–Tokyo, 2002, 346 pp. | MR | Zbl
[51] R. E. Showalter, “The Sobolev equation”, Applicable Analysis, 5:1 (1975), 5–22 ; 5:2, 81–89 | DOI | MR | Zbl | MR
[52] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln, 2003, 216 pp. | MR | Zbl
[53] Sukacheva T. G., Kondyukov A. O., “On a class of Sobolev-type equations”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:4 (2014), 5–21 | DOI | Zbl
[54] Zagrebina S. A., “A Multipoint initial-final value problem for a linear model of plane-parallel thermal convection in viscoelastic incompressible fluid”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:3 (2014), 5–22 (in Russ.) | DOI | Zbl