Homogeneous model of incompressible viscoelastic fluid of the non-zero order
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 3, pp. 22-30
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deas with the Cauchy–Dirichlet problem for homogeneous dynamics model of the incompressible viscoelastic Kelvin–Voigt fluid of the non-zero order. The problem is studed using the theory of semilinear Sobolev type equations. The Cauchy–Dirichlet problem for the corresponding system of differential equations in partial derivatives is reduced to the abstract Cauchy problem for the indicated equations. The theorem of unique existance of solution to indicated problem, which is a quasistationary trajectory, is proved. The phase space is described.
Mots-clés : Sobolev type equation
Keywords: phase space, incompressible viscoelastic fluid.
@article{VYURM_2016_8_3_a2,
     author = {O. P. Matveeva and T. G. Sukacheva},
     title = {Homogeneous model of incompressible viscoelastic fluid of the non-zero order},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {22--30},
     year = {2016},
     volume = {8},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a2/}
}
TY  - JOUR
AU  - O. P. Matveeva
AU  - T. G. Sukacheva
TI  - Homogeneous model of incompressible viscoelastic fluid of the non-zero order
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 22
EP  - 30
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a2/
LA  - ru
ID  - VYURM_2016_8_3_a2
ER  - 
%0 Journal Article
%A O. P. Matveeva
%A T. G. Sukacheva
%T Homogeneous model of incompressible viscoelastic fluid of the non-zero order
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 22-30
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a2/
%G ru
%F VYURM_2016_8_3_a2
O. P. Matveeva; T. G. Sukacheva. Homogeneous model of incompressible viscoelastic fluid of the non-zero order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 3, pp. 22-30. http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a2/

[1] Oskolkov A. P., “Initial-boundary value problems for equations of motion Kelvin–Voight and Oldroyd fluids”, Trudy Mat. In-ta AN SSSR, 179 (1988), 126–164 | MR

[2] Sviridyuk G. A., Sukacheva T. G., “Cauchy problem for a class of semilinear equations of Sobolev type”, Siberian Mathematical Journal, 31:5 (1990), 794–802 | DOI | MR | Zbl

[3] Sukacheva T. G., “On a certain model of motion of an incompressible visco-elastic Kelvin–Voight fluid of nonzero order”, Differential Equations, 33:4 (1997), 552–557 | MR | Zbl

[4] Sukacheva T. G., Matveeva O. P., “Taylor problem for the zero-order model of an incompressible viscoelastic fluid”, Differential Equations, 51:6 (2015), 783–791 | DOI | DOI | Zbl

[5] Matveeva O. P., “Quasi-stationary trajectories of the Taylor problem for the model of the incompressible viscoelastic fluid of nonzero order”, Bulletin of the South Ural State University. Series: Mathematical Modelling and Programming Computer Software, 16(192):5 (2010), 39–47 (in Russ.)

[6] Sviridyuk G. A., Sukacheva T. G., “Some mathematical problems of the dynamics of viscoelastic incompressible media”, Vestnik MaGU, 2005, no. 8, 5–33