Keywords: phase space, incompressible viscoelastic fluid.
@article{VYURM_2016_8_3_a2,
author = {O. P. Matveeva and T. G. Sukacheva},
title = {Homogeneous model of incompressible viscoelastic fluid of the non-zero order},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {22--30},
year = {2016},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a2/}
}
TY - JOUR AU - O. P. Matveeva AU - T. G. Sukacheva TI - Homogeneous model of incompressible viscoelastic fluid of the non-zero order JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2016 SP - 22 EP - 30 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a2/ LA - ru ID - VYURM_2016_8_3_a2 ER -
%0 Journal Article %A O. P. Matveeva %A T. G. Sukacheva %T Homogeneous model of incompressible viscoelastic fluid of the non-zero order %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2016 %P 22-30 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a2/ %G ru %F VYURM_2016_8_3_a2
O. P. Matveeva; T. G. Sukacheva. Homogeneous model of incompressible viscoelastic fluid of the non-zero order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 3, pp. 22-30. http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a2/
[1] Oskolkov A. P., “Initial-boundary value problems for equations of motion Kelvin–Voight and Oldroyd fluids”, Trudy Mat. In-ta AN SSSR, 179 (1988), 126–164 | MR
[2] Sviridyuk G. A., Sukacheva T. G., “Cauchy problem for a class of semilinear equations of Sobolev type”, Siberian Mathematical Journal, 31:5 (1990), 794–802 | DOI | MR | Zbl
[3] Sukacheva T. G., “On a certain model of motion of an incompressible visco-elastic Kelvin–Voight fluid of nonzero order”, Differential Equations, 33:4 (1997), 552–557 | MR | Zbl
[4] Sukacheva T. G., Matveeva O. P., “Taylor problem for the zero-order model of an incompressible viscoelastic fluid”, Differential Equations, 51:6 (2015), 783–791 | DOI | DOI | Zbl
[5] Matveeva O. P., “Quasi-stationary trajectories of the Taylor problem for the model of the incompressible viscoelastic fluid of nonzero order”, Bulletin of the South Ural State University. Series: Mathematical Modelling and Programming Computer Software, 16(192):5 (2010), 39–47 (in Russ.)
[6] Sviridyuk G. A., Sukacheva T. G., “Some mathematical problems of the dynamics of viscoelastic incompressible media”, Vestnik MaGU, 2005, no. 8, 5–33