Mots-clés : Sobolev type equations
@article{VYURM_2016_8_3_a1,
author = {A. O. Kondyukov},
title = {Generalized model of incompressible viscoelastic fluid in the {Earth's} magnetic field},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {13--21},
year = {2016},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a1/}
}
TY - JOUR AU - A. O. Kondyukov TI - Generalized model of incompressible viscoelastic fluid in the Earth's magnetic field JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2016 SP - 13 EP - 21 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a1/ LA - ru ID - VYURM_2016_8_3_a1 ER -
%0 Journal Article %A A. O. Kondyukov %T Generalized model of incompressible viscoelastic fluid in the Earth's magnetic field %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2016 %P 13-21 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a1/ %G ru %F VYURM_2016_8_3_a1
A. O. Kondyukov. Generalized model of incompressible viscoelastic fluid in the Earth's magnetic field. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 3, pp. 13-21. http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a1/
[1] Oskolkov A. P., Trudy matem. instituta AN SSSR, 179 (1988), 126–164. (in Russ.) | MR
[2] Henry D., Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin–Heidelberg–New York, 1981, 348 pp. (in Eng.) | DOI | MR | MR | Zbl
[3] R. Hide, “On planetary atmospheres and interiors”, Mathematical Problems in the Geophysical Sciences I, ed. W. H. Reid, Amer. Math. Soc., Providence, R.I., 1971
[4] Oskolkov A. P., Zapiski nauchnogo seminara LOMI, 21, 1971, 79–103 (in Russ.) | MR | Zbl
[5] Ladyzhenskaya O. A., The mathematical theory of viscous incompressible flow, Gordon and Breach, N.Y.–London–Paris, 1969, 234 pp. | MR | Zbl
[6] Temam R., Navier–Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam–New York–Oxford, 1977, 500 pp. (in Eng.) | MR | MR | Zbl
[7] F. Chen, P. Wang, C. Qu, “On the differential system governing fluids in magnetic field with data in $\mathrm{L^p}$”, Internat. J. Math. Math. Sci., 21:2 (1998), 299–306 | DOI | MR
[8] Sukacheva T. G., Kondyukov A. O., “Phase space of a model of magnetohydrodynamics”, Differential Equations, 51:4 (2015), 502–509 | DOI | DOI | MR | Zbl
[9] Kondyukov A. O., Sukacheva T. G., “Ob odnoy modeli magnitogidrodinamiki nenulevogo poryadka”, XVI All-Russian Symposium on Applied and Industrial Mathematics, summer session (Chelyabinsk, 21–27 June 2015), 75
[10] Sviridyuk G. A., Sukacheva T. G., Differ. Uravn., 26:2 (1990), 250–258 (in Russ.) | MR | Zbl
[11] Sviridyuk G. A., Sukacheva T. G., Sibirskiy matematicheskiy zhurnal, 31:5 (1990), 109–119 (in Russ.) | MR | Zbl
[12] Matveeva O. P., Sukacheva T. G., Mathematical models of viscoelastic incompressible fluid of nonzero order, Publ. Center of the South Ural State University, Chelyabinsk, 2014, 101 pp. (in Russ.)
[13] Sviridyuk G. A., Izv. RAN. Ser. matem., 57:3 (1993), 192–207 (in Russ.) | MR | Zbl
[14] Sviridyuk G. A., “On a model of the dynamics of a weakly compressible viscoelastic fluid”, Russian Mathematics (Izvestiya VUZ. Matematika), 38:1 (1994), 59–68 | MR | Zbl
[15] A. Favini, G. A. Sviridyuk, N. A. Manakova, “Linear Sobolev Type Equations with Relatively $p$-Sectorial Operators in Space of “Noises””, Abstract and Applied Analysis, 2015 (2015), 697410, 8 pp. | DOI | MR
[16] A. Favini, “Perturbation methods for inverse problems related to degenerate differential equations”, Journal of Computational and Engineering Mathematics, 1:2 (2014), 32–44 | MR | Zbl
[17] M. Cheggag, A. Favini, R. Labbas, S. Maingot, A. Medeghri, “Elliptic Problems with Robin Boundary Coefficient-Operator Conditions in General $L^p$ Sobolev Spaces and Applications”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:3 (2015), 56–77 | Zbl