Inverse problem for Sobolev type equation of the second order
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 3, pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with the inverse problem for the Sobolev type equation of the second order in Banach spaces. The introduction contains a problem statement and the historiography of Sobolev type equations. The second part includes preliminary information based on the results of the theory of higher-order Sobolev type equations. In the third part the initial problem is reduced to the inverse regular and singular problems. A theorem of unique solvability of regular problem is formulated and proved. Using the results of the third part, the solution for the singular problem is obtained in the fourth part. The sum of regular and singular solutions is a solution to the original problem, thus a theorem on the unique solvability of the inverse problem for Sobolev type equation of the second order is stated and proved.
Keywords: Sobolev type equation of the second order, inverse problem, a unique solvability theorem.
@article{VYURM_2016_8_3_a0,
     author = {A. A. Zamyshlyaeva and A. S. Muravyev},
     title = {Inverse problem for {Sobolev} type equation of the second order},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--12},
     year = {2016},
     volume = {8},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a0/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
AU  - A. S. Muravyev
TI  - Inverse problem for Sobolev type equation of the second order
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 5
EP  - 12
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a0/
LA  - en
ID  - VYURM_2016_8_3_a0
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%A A. S. Muravyev
%T Inverse problem for Sobolev type equation of the second order
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 5-12
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a0/
%G en
%F VYURM_2016_8_3_a0
A. A. Zamyshlyaeva; A. S. Muravyev. Inverse problem for Sobolev type equation of the second order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 3, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2016_8_3_a0/

[1] Zamyshlyaeva A. A., “The phase space of a high order Sobolev type equation”, IIGU Ser. Matematika, 4:4 (2011), 45–57 (in Russ.) | Zbl

[2] Zamyshlyaeva A. A., “The Higher-Order Sobolev-Type Models”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:2 (2014), 5–28 (in Russ.) | DOI | Zbl

[3] Zamyshlyaeva A. A., Sobolev type linear equations of the higher order, Publishing Center of SUSU, 2012, 107 pp. (in Russ.) | MR

[4] N. L. Abasheeva, “Determination of a Right-hand Side Term in an Operator-differential Equation of Mixed Type”, Journal of Inverse and Ill-posed Problems, 10:6 (2002), 547–560 | DOI | MR | Zbl

[5] M. Al Horani, A. Favini, “An Identification Problem for First-order Degenerate Differential Equations”, Journal of Optimization Theory and Applications, 130:1 (2006), 41–60 | DOI | MR | Zbl

[6] A. I. Kozhanov, Composite Type Equations and Inverse Problem, VSP, Utrecht, 1999, 171 pp. | MR

[7] Fedorov V. E., Urazaeva A. V., “Linear Inverse Evolution Problems for Sobolev Type”, Non-classical equations of mathematical physics, Collection of scientific papers, 2010, 293–310 (in Russ.)

[8] Sviridyuk G. A., Vakarina O. V., “Cauchy Problem for a Class of Higher-Order Linear Equations Of Sobolev Type”, Differential Equations, 33:10 (1997), 1415–1424 | MR | Zbl

[9] Pyatkov S. G., “On some inverse problems for elliptic equations and systems”, Journal of Applied and Industrial Mathematics, 5:3 (2011), 417–430 | DOI | MR | Zbl

[10] Mel'nikova I. V., Filinkov A. I., “Integrated semigroups and C-semigroups. Well-posedness and regularization of differential-operator problems”, Russian Mathematical Surveys, 49:6 (1994), 115–155 | DOI | MR | Zbl

[11] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 2000, 709 pp. | MR | Zbl