Calculation of vacancy concentration under thermo-mechanical loading
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 2, pp. 71-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The evolution of vacancy system and pore emergence under the influence of cyclic thermo-mechanical loading determines the durability of the nanocrystalline two-phase alloys such as superalloys, which are composite materials. The emergence of excess non-equilibrium vacancies, the activation of diffusion processes and the pore growth occur under the influence of thermo-mechanical loading. However, kinetics of the emergence and evolution of the excess vacancy concentration at various kinds of thermo-mechanical loading arising during the operation process have not been investigated yet. In this paper, the vacancy concentration in the one-dimensional model for thermo-mechanical loading including cyclic tensile stresses, thermal stresses and heating to high temperature taking into account microstructure is calculated. The considerable supersaturation of non-equilibrium vacancies arises in nanostructured alloys under the influence of thermo-mechanical loading. The rising of diffusion may occur at a critical value of excess vacancies as part of the diffusion-deformation stability mechanism, when small local fluctuation of excess vacancy concentration begins to grow. The growth occurs due to a Gibbs energy decrease in the increased vacancy concentration caused by the influence of thermo-mechanical stresses.
Keywords: thermal expansion, chemical potential, inhomogeneous concentration of vacancies, thermal activation mechanism.
Mots-clés : diffusion stresses
@article{VYURM_2016_8_2_a9,
     author = {A. V. Galaktionova and A. K. Emaletdinov},
     title = {Calculation of vacancy concentration under thermo-mechanical loading},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {71--76},
     year = {2016},
     volume = {8},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a9/}
}
TY  - JOUR
AU  - A. V. Galaktionova
AU  - A. K. Emaletdinov
TI  - Calculation of vacancy concentration under thermo-mechanical loading
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 71
EP  - 76
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a9/
LA  - ru
ID  - VYURM_2016_8_2_a9
ER  - 
%0 Journal Article
%A A. V. Galaktionova
%A A. K. Emaletdinov
%T Calculation of vacancy concentration under thermo-mechanical loading
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 71-76
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a9/
%G ru
%F VYURM_2016_8_2_a9
A. V. Galaktionova; A. K. Emaletdinov. Calculation of vacancy concentration under thermo-mechanical loading. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 2, pp. 71-76. http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a9/

[1] Shalin P. E., Svetlov I. L., Kachanov E. B., Monocrystals of nickel heat-resisting alloys, Mashinostroenie Publ., M., 1977, 336 pp. (in Russ.)

[2] Kablov E. N., Cast blades of gas-turbine engines. Alloys, technology coating, MISiS Publ., M., 2001, 632 pp. (in Russ.)

[3] Boguslaev V. A., Muravchenko F. M., Zhemanyuk P. D., Technological support for performance of GTE parts, v. 1, 2, Motor Sich Publ., Zaporozh'e, 2003 (in Russ.)

[4] Orlov M. R., Technological support for the resource rotor blades of the first stages of the turbine aviation and land-based gas turbine engines, Dr. eng. sci. diss., M., 2002, 215 pp. (in Russ.)

[5] Bokshteyn B., Epishin A., Svetlov I., Esin V., Rodin A., Link T., Functional Materials, 1:5 (2007), 75–79 (in Russ.)

[6] Svetlov I. L., Iskhodzhanova I. V., Evchenov L. G., Deformatsiya i razrushenie materialov, 2011, no. 3, 28–32 (in Russ.)

[7] Geguzin Ya. E., Diffusion zone, Nauka Publ., M., 1979, 343 pp. (in Russ.)

[8] Kablov E. N., Orlov M. R., Ospennikova O. G., Aviatsionnye materialy i tekhnologii, 2012, no. 8, 48–54 (in Russ.)

[9] Bol'shakov V. I., Andrianov V. I., Danishevskiy V. V., Asymptotic methods of calculation of composite materials based on the internal structure, Porogi Publ., Dnepropetrovsk, 2008, 196 pp. (in Russ.)

[10] Vanin G. A., Micromechanics of composite materials, Naukova Dumka Publ., Kiev, 1985, 304 pp. (in Russ.)

[11] Kulemin A. V., Ultrasound and diffusion in metals, Metallurigiya Publ., M., 1978, 200 pp. (in Russ.)

[12] Skubachevskiy G. S., Air and gas turbine engines. Structure and calculation of details, Mashinostroenie Publ., M., 1981, 550 pp. (in Russ.)

[13] L. Müller, U. Glatzel, M. Feller-Kniepmeier, “Modelling of themial misfit stresses in nickel-base superalloy containing high volume fraction of $\gamma$-phase”, Acta metal, mater., 40:6 (1992), 1321–1327 | DOI

[14] S. Socrate, D. M. Parks, “Numerical determination of the elastic driving force for directional coarsening of Ni-superalloys”, Acta metal, mater., 41:7 (1993), 2185–2209 | DOI

[15] Krivko A. P., Epishin A. P., Svetlov I. L., Samoylov A. I., Problemy prochnosti, 1989, no. 2, 3–9 (in Russ.) | MR