Mots-clés : bisingular perturbation, elliptic equation
@article{VYURM_2016_8_2_a6,
author = {D. A. Tursunov and U. Z. Erkebaev},
title = {Asymptotics of the solution to the bisingular perturbed {Dirichlet} problem in the ring with quadratic growth on the boundary},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {52--61},
year = {2016},
volume = {8},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a6/}
}
TY - JOUR AU - D. A. Tursunov AU - U. Z. Erkebaev TI - Asymptotics of the solution to the bisingular perturbed Dirichlet problem in the ring with quadratic growth on the boundary JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2016 SP - 52 EP - 61 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a6/ LA - ru ID - VYURM_2016_8_2_a6 ER -
%0 Journal Article %A D. A. Tursunov %A U. Z. Erkebaev %T Asymptotics of the solution to the bisingular perturbed Dirichlet problem in the ring with quadratic growth on the boundary %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2016 %P 52-61 %V 8 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a6/ %G ru %F VYURM_2016_8_2_a6
D. A. Tursunov; U. Z. Erkebaev. Asymptotics of the solution to the bisingular perturbed Dirichlet problem in the ring with quadratic growth on the boundary. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 2, pp. 52-61. http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a6/
[1] Il'in A. M., Concordance of asymptotic expansions of boundary value problems, Nauka Publ., M., 1989, 334 pp. (in Russ.)
[2] Il'in A. M., Lelikova E. F., Mathematics of the USSR-Sbornik, 25:4 (1975), 533–548 | DOI | MR | Zbl
[3] Il'in A. M., Lelikova E. F., “On asymptotic approximations of solutions of an equation with a small parameter”, St. Petersburg Mathematical Journal, 22:6 (2011), 927–939 | DOI | MR | Zbl
[4] Lelikova E. F., “On the asymptotics of a solution to an equation with a small parameter at some of the highest derivatives”, Proceedings of the Steklov Institute of Mathematics, 281, 2013, 95–104 | DOI
[5] Lelikova E. F., “The asymptotics of the solution of an equation with a small parameter in a domain with angular points”, Sbornik: Mathematics, 201:10 (2010), 1495–1510 | DOI | DOI | MR | Zbl
[6] Tursunov D. A., “Asymptotic expansion of the solution of the bisingularly perturbed elliptic equation”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 6(26), 37–44 (in Russ.)
[7] Tursunov D. A., Erkebaev U. Z., “Asymptotic expansion of the solution of a perturbed elliptic equation when the limit equation has singular points”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 3(35), 26–34 (in Russ.) | DOI
[8] Tursunov D. A., Erkebaev U. Z., “Asymptotic expansion of the solution of the Dirichlet problem for a ring with a singularity on the boundary”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 1(39), 42–52 (in Russ.) | Zbl
[9] Tursunov D. A., Erkebaev U. Z., “Asymptotics of the Dirichlet problem solution for a bisingular perturbed equation in the ring”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:4 (2015), 517–525 (in Russ.) | MR | Zbl
[10] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin–Heidelberg, 2001, 518 pp. (in Eng.) | DOI | MR | Zbl
[11] Fedoryuk M. V., Asymptotic methods for linear ordinary differential equations, Nauka Publ., M., 1983, 352 pp. (in Russ.)