Asymptotics of the solution to the bisingular perturbed Dirichlet problem in the ring with quadratic growth on the boundary
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 2, pp. 52-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet problem for elliptic equations with a small parameter in the highest derivatives takes a unique place in mathematics. In general case it is impossible to build explicit solution to these problems, which is why the researchers apply different asymptotic methods. The aim of the research is to develop the asymptotic method of boundary functions for constructing complete asymptotic expansions of the solutions to such problems. The proposed generalized method of boundary functions differs from the matching method in the fact that the growing features of the outer expansion are actually removed from it and with the help of the auxiliary asymptotic series are fully included in the internal expansions, and differs from the classical method of boundary functions in the fact that the boundary functions decay in power-mode nature and not exponentially. Using the proposed method, a complete asymptotic expansion of the solution to the Dirichlet problem for bisingular perturbed linear inhomogeneous second-order elliptic equations with two independent variables in the ring with quadratic growth on the boundary is built. A built asymptotic series corresponds to the Puiseux series. The basic term of the asymptotic expansion of the solution has a negative fractional degree of the small parameter, which is typical for bisingular perturbed equations, or equations with turning points. The built expansion is justified by the maximum principle.
Keywords: asymptotic expansion of a solution, Dirichlet problem in the ring, small parameter, generalized method of boundary functions, boundary functions, modified Bessel functions.
Mots-clés : bisingular perturbation, elliptic equation
@article{VYURM_2016_8_2_a6,
     author = {D. A. Tursunov and U. Z. Erkebaev},
     title = {Asymptotics of the solution to the bisingular perturbed {Dirichlet} problem in the ring with quadratic growth on the boundary},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {52--61},
     year = {2016},
     volume = {8},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a6/}
}
TY  - JOUR
AU  - D. A. Tursunov
AU  - U. Z. Erkebaev
TI  - Asymptotics of the solution to the bisingular perturbed Dirichlet problem in the ring with quadratic growth on the boundary
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 52
EP  - 61
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a6/
LA  - ru
ID  - VYURM_2016_8_2_a6
ER  - 
%0 Journal Article
%A D. A. Tursunov
%A U. Z. Erkebaev
%T Asymptotics of the solution to the bisingular perturbed Dirichlet problem in the ring with quadratic growth on the boundary
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 52-61
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a6/
%G ru
%F VYURM_2016_8_2_a6
D. A. Tursunov; U. Z. Erkebaev. Asymptotics of the solution to the bisingular perturbed Dirichlet problem in the ring with quadratic growth on the boundary. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 2, pp. 52-61. http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a6/

[1] Il'in A. M., Concordance of asymptotic expansions of boundary value problems, Nauka Publ., M., 1989, 334 pp. (in Russ.)

[2] Il'in A. M., Lelikova E. F., Mathematics of the USSR-Sbornik, 25:4 (1975), 533–548 | DOI | MR | Zbl

[3] Il'in A. M., Lelikova E. F., “On asymptotic approximations of solutions of an equation with a small parameter”, St. Petersburg Mathematical Journal, 22:6 (2011), 927–939 | DOI | MR | Zbl

[4] Lelikova E. F., “On the asymptotics of a solution to an equation with a small parameter at some of the highest derivatives”, Proceedings of the Steklov Institute of Mathematics, 281, 2013, 95–104 | DOI

[5] Lelikova E. F., “The asymptotics of the solution of an equation with a small parameter in a domain with angular points”, Sbornik: Mathematics, 201:10 (2010), 1495–1510 | DOI | DOI | MR | Zbl

[6] Tursunov D. A., “Asymptotic expansion of the solution of the bisingularly perturbed elliptic equation”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 6(26), 37–44 (in Russ.)

[7] Tursunov D. A., Erkebaev U. Z., “Asymptotic expansion of the solution of a perturbed elliptic equation when the limit equation has singular points”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 3(35), 26–34 (in Russ.) | DOI

[8] Tursunov D. A., Erkebaev U. Z., “Asymptotic expansion of the solution of the Dirichlet problem for a ring with a singularity on the boundary”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 1(39), 42–52 (in Russ.) | Zbl

[9] Tursunov D. A., Erkebaev U. Z., “Asymptotics of the Dirichlet problem solution for a bisingular perturbed equation in the ring”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:4 (2015), 517–525 (in Russ.) | MR | Zbl

[10] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin–Heidelberg, 2001, 518 pp. (in Eng.) | DOI | MR | Zbl

[11] Fedoryuk M. V., Asymptotic methods for linear ordinary differential equations, Nauka Publ., M., 1983, 352 pp. (in Russ.)