Mots-clés : tsunami
@article{VYURM_2016_8_2_a5,
author = {V. A. Simonenko and N. A. Skorkin and A. S. Uglov},
title = {A semi-splitting finite difference scheme of matrix coefficients and its application to describe the tsunami propagation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {44--51},
year = {2016},
volume = {8},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a5/}
}
TY - JOUR AU - V. A. Simonenko AU - N. A. Skorkin AU - A. S. Uglov TI - A semi-splitting finite difference scheme of matrix coefficients and its application to describe the tsunami propagation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2016 SP - 44 EP - 51 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a5/ LA - ru ID - VYURM_2016_8_2_a5 ER -
%0 Journal Article %A V. A. Simonenko %A N. A. Skorkin %A A. S. Uglov %T A semi-splitting finite difference scheme of matrix coefficients and its application to describe the tsunami propagation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2016 %P 44-51 %V 8 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a5/ %G ru %F VYURM_2016_8_2_a5
V. A. Simonenko; N. A. Skorkin; A. S. Uglov. A semi-splitting finite difference scheme of matrix coefficients and its application to describe the tsunami propagation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 2, pp. 44-51. http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a5/
[1] Fletcher C. A. J., Computational Techniques for Fluid Dynamics, v. 2, Springer Verlag Ed., 1988 | Zbl
[2] Kuropatenko V. F., “Methods of shock wave calculations”, Dal'nevostochnyy matematicheskiy zhurnal, 2:2 (2001), 45–59 | MR
[3] L. Charles Mader, “Numerical Simulation of Tsunami”, Journal of Physical Oceanography, 4 (1974), 74–82 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[4] A. G. A. Marchuk, A. A. Anisimov, “Method for Numerical Modeling of Tsunami Run-up on the Coast of Arbitrary Profile”, ITS 2001 Processing, Session 7, Number 7-27, 933–940; Препринт No 25, ИПФ АН СССР, Горький, 1981, 15 с.
[5] Mazova R. Kh., Pelinovskiy E. N., “Linear Theory of Wave Run Up on a Beach”, Izv. AN SSSR. Fizika atmosfery i okeana, 18:2 (1982), 166–171 (in Russ.) | MR | Zbl
[6] Simonenko V. A., Skorkin N. A., Elsukov V. P., Uglov A. S., “Mathematical Modeling of Magatsunamis”, Vestnik YuUrGU, ser. “Matematika, fizika, khimiya”, 2008, no. 22(11), 62–69 (in Russ.) | MR
[7] Beizel S. A., Shokina N. Y., Khakimzyanov G. S., Chubarov L. B., Kovyrkina O. A., Ostapenko V. V., “On some numerical algorithms for computation of tsunami runup in the framework of shallow water model, I”, Computational technologies, 19:1 (2014), 40–62 (in Russ.)
[8] M. J. Ketabdaria, M. R. H. Nobarib, M. Moradi Larmaei, “Simulation of waves group propagation and breaking in coastal zone using a Navier-Stokes solver with an improved VOF free surface treatment”, Appl. Ocean Res., 30:2 (2008), 130–143 | DOI
[9] Kochin N. E., Kibel' I. A., Roze N. V., Theoretical Hydromechanics Theoretical Hydromechanics, v. II, Fizmatlit Publ., M., 1963, 728 pp. (in Russ.)