@article{VYURM_2016_8_2_a4,
author = {S. I. Kadchenko and O. A. Torshina},
title = {Calculation of eigenvalues of elliptic differential operators using the theory of regularized series},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {36--43},
year = {2016},
volume = {8},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a4/}
}
TY - JOUR AU - S. I. Kadchenko AU - O. A. Torshina TI - Calculation of eigenvalues of elliptic differential operators using the theory of regularized series JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2016 SP - 36 EP - 43 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a4/ LA - ru ID - VYURM_2016_8_2_a4 ER -
%0 Journal Article %A S. I. Kadchenko %A O. A. Torshina %T Calculation of eigenvalues of elliptic differential operators using the theory of regularized series %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2016 %P 36-43 %V 8 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a4/ %G ru %F VYURM_2016_8_2_a4
S. I. Kadchenko; O. A. Torshina. Calculation of eigenvalues of elliptic differential operators using the theory of regularized series. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 2, pp. 36-43. http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a4/
[1] Dubrovskiy V. V., Torshina O. A., “Problem solving eigenvalue problems for differential operators with a complex spectral parameter”, New mathematical methods. An electromagnetic waves and electronic systems, 7:9 (2002), 4–10 (in Russ.) | MR
[2] Dubrovskiy V. V., Torshina O. A., “The formula for the first regularized trace of the differential Laplace–Beltrami”, Differential equations and their applications, 2002, no. 1, 9–19 (in Russ.)
[3] Torshina O. A., “The algorithm for calculation of the regularized trace for the Laplace–Beltrami operator with potential on the projective plane”, Vestnik MaGU. Matematika, 2003, no. 4, 183–215 (in Russ.)
[4] Torshina O. A., “The traces of discrete operators with partial derivatives”, Almanac of modern science and education, 2012, no. 4(59), 220–222 (in Russ.)
[5] Torshina O. A., “The formula for the first regularized trace of the Laplace–Bochner with potential on the projective plane”, Voronezh Winter Mathematical School, 2004, 104–105 (in Russ.)
[6] Torshina O. A., “The formula for the first regularized trace for the Laplace–Beltrami operator with potential on the non-smooth projective plane”, Vestnik of Samara State Technical University. Mathematics, 2006, 32–40 (in Russ.) | MR
[7] Torshina O. A., “The formula of the regularized trace of a differential operator with complex spectral parameter”, General management problems and their applications, 2003, 467–468 (in Russ.)
[8] Torshina O. A., “A numerical method for calculating corrections of perturbation theory”, Almanac of modern science and education, 2013, no. 12, 168–170 (in Russ.)
[9] V. V. Dubrovskii, S. I. Kadchenko, V. F. Kravchenko, V. A. Sadovnichii, “A new method for approximate evaluation of the first eigenvalues in the spectral problem of hydrodynamic stability of poiseuille flow in a circular pipe”, Doklady Mathematics, 64:2 (2001), 165–168 | MR
[10] V. V. Dubrovskii, S. I. Kadchenko, V. F. Kravchenko, V. A. Sadovnichii, “A new method for the evaluation of the first eigenvalues in the spectral problem of hydrodynamic stability of viscous fluid flow between two rotating cylinders”, Doklady Mathematics, 64:3 (2001), 425–429 | Zbl
[11] V. V. Dubrovskii, S. I. Kadchenko, V. F. Kravchenko, V. A. Sadovnichii, “A new metod for approximate evaluation of the first eigenvalues in the Orr–Sommerfelg eigenvalue problem”, Doklady Mathematics, 63:3 (2001), 355–358 | Zbl
[12] V. V. Dubrovskii, S. I. Kadchenko, V. F. Kravchenko, V. A. Sadovnichii, “Computation of the first eigenvalues of a discrete operator”, Electromagnetic Waves and Electronic Systems, 3:2 (1998), 4 | MR
[13] V. A. Sadovnichii, V. V. Dubrovskii, S. I. Kadchenko, V. F. Kravchenko, “Computation of the first eigenvalues of the hydrodynamic stability problem for a viscous fluid flow between two rotating cylinders”, Differential Equations, 36:6 (2000), 819–824 | DOI | MR
[14] V. A. Sadovnichii, V. V. Dubrovskii, S. I. Kadchenko, V. F. Kravchenko, “Evaluation of eigenvalues of the problem of hydrodynamic stability of viscous liquid flow between two rotating cylinders at small Reynolds numbers”, Doklady Mathematics, 58:3 (1998), 483–486