An approximate solution of loaded hyperbolic equation with homogenios boundary conditions
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 2, pp. 14-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article proposes a method for solving hyperbolic equation with a spatial variable integral of the natural powers of the unknown function modulus, whereby it is loaded. The author considers an initial boundary value problem with homogeneous boundary conditions. Scalar products of the equation by various functionals and subsequent conversions make it possible to obtain a priori estimates of solutions of the problem in various spaces. By successive integration over the spatial variable the reduction to an ordinary differential equation associated with the initial one is produced. Its approximate solution is sought using a priori estimates that are obtained. Found function leads to the formula that expresses the approximate solution to the original problem through the right parts of the initial conditions.
Keywords: loaded partial differential equation, a priori estimate, approximate solutions.
@article{VYURM_2016_8_2_a1,
     author = {O. L. Boziev},
     title = {An approximate solution of loaded hyperbolic equation with homogenios boundary conditions},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {14--18},
     year = {2016},
     volume = {8},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a1/}
}
TY  - JOUR
AU  - O. L. Boziev
TI  - An approximate solution of loaded hyperbolic equation with homogenios boundary conditions
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 14
EP  - 18
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a1/
LA  - ru
ID  - VYURM_2016_8_2_a1
ER  - 
%0 Journal Article
%A O. L. Boziev
%T An approximate solution of loaded hyperbolic equation with homogenios boundary conditions
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 14-18
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a1/
%G ru
%F VYURM_2016_8_2_a1
O. L. Boziev. An approximate solution of loaded hyperbolic equation with homogenios boundary conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 2, pp. 14-18. http://geodesic.mathdoc.fr/item/VYURM_2016_8_2_a1/

[1] Lions J. L., Some methods of nonlinear boundary value problems solving, Editorial URSS Publ., M., 2010, 586 pp. (in Russ.)

[2] Nakhushev A. M., Loaded equations and their applications, Nauka Publ., M., 2012, 232 pp. (in Russ.)

[3] Boziev O. L., Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2014, no. 4(60), 7–13 (in Russ.)

[4] Boziev O. L., Vestnik Tverskogo gosudarstvennogo universiteta. Seriya “Prikladnaya matematika”, 2015, no. 1, 127–136 (in Russ.)

[5] Gaevskii G., Grioger K., Zaharias K., Nonlinear operator equations and operator differential equations, Mir Publ., M., 1978, 236 pp. (in Russ.)

[6] Filatov A. N., Sharova L. V., Integral inequality and theory of nonlinear oscillations, Nauka Publ., M., 1976, 151 pp. (in Russ.)