Normed systems and their application to the solutions of differential equations of fractional order
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 1, pp. 28-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article describes a method of constructing the normed systems related to the differentiation of fractional order. Using the properties of normed systems the rigor solutions of ordinary differential equations of fractional order are given.
Keywords: normed system; fractional derivative; generalized-homogeneous operator; fundamental solution; inhomogeneous equation.
@article{VYURM_2016_8_1_a3,
     author = {B. Kh. Turmetov},
     title = {Normed systems and their application to the solutions of differential equations of fractional order},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {28--33},
     year = {2016},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a3/}
}
TY  - JOUR
AU  - B. Kh. Turmetov
TI  - Normed systems and their application to the solutions of differential equations of fractional order
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 28
EP  - 33
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a3/
LA  - ru
ID  - VYURM_2016_8_1_a3
ER  - 
%0 Journal Article
%A B. Kh. Turmetov
%T Normed systems and their application to the solutions of differential equations of fractional order
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 28-33
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a3/
%G ru
%F VYURM_2016_8_1_a3
B. Kh. Turmetov. Normed systems and their application to the solutions of differential equations of fractional order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 1, pp. 28-33. http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a3/

[1] V. V. Karachik, “Normalized system of functions with respect to the Laplace operator and its applications”, Journal of Mathematical Analysis and Application, 287:2 (2003), 577–592 | DOI | MR | Zbl

[2] Karachik V. V., “Method for constructing solutions of linear ordinary differential equations with constant coefficients”, Computational Mathematics and Mathematical Physics, 52:2 (2012), 219–234 | DOI | MR | Zbl

[3] Karachik V. V., Antropova N. A., “On polynomial solutions to the Dirichlet problem for a biharmonic equation in a ball”, Sib. Zh. Ind. Mat., 15:2 (2012), 86–98 (in Russ.) | MR

[4] Karachik V. V., “Solution of the Dirichlet Problem with Polynomial Data for the Polyharmonic Equation in a Ball”, Differential Equations, 51:8 (2015), Article ID 204, 1033–1042 | DOI | DOI | MR | Zbl

[5] V. V. Karachik, M. A. Sadybekov, B. T. Torebek, “Uniqueness of solutions to boundary-value problems for the biharmonic equation in a ball”, Electronic Journal of Differential Equations, 2015:244 (2015), 1–9 | MR

[6] L. Liu, G. B. Ren, “Normalized system for wave and Dunkl operators”, Taiwanese Journal of Mathematics, 14:2 (2007), 675–683 | MR

[7] H. F. Yuan, V. V. Karachik, “Dunkl–Poisson Equation and Related Equations in Superspace”, Mathematical Modelling and Analysis, 20:6 (2015), 768–781 | DOI | MR

[8] Karachik V. V., Method of normed system of functions, Izdatelskiy sentr YurGU Publ., Chelyabinsk, 2014, 452 pp. (in Russ.)

[9] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl

[10] R. Hilfer, Y. Luchko, Z. Tomovski, “Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives”, Fract. Calc. Appl. Anal., 12:3 (2009), 299–318 | MR | Zbl