Normed systems and their application to the solutions of differential equations of fractional order
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 1, pp. 28-33

Voir la notice de l'article provenant de la source Math-Net.Ru

This article describes a method of constructing the normed systems related to the differentiation of fractional order. Using the properties of normed systems the rigor solutions of ordinary differential equations of fractional order are given.
Keywords: normed system; fractional derivative; generalized-homogeneous operator; fundamental solution; inhomogeneous equation.
@article{VYURM_2016_8_1_a3,
     author = {B. Kh. Turmetov},
     title = {Normed systems and their application to the solutions of differential equations of fractional order},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {28--33},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a3/}
}
TY  - JOUR
AU  - B. Kh. Turmetov
TI  - Normed systems and their application to the solutions of differential equations of fractional order
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 28
EP  - 33
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a3/
LA  - ru
ID  - VYURM_2016_8_1_a3
ER  - 
%0 Journal Article
%A B. Kh. Turmetov
%T Normed systems and their application to the solutions of differential equations of fractional order
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 28-33
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a3/
%G ru
%F VYURM_2016_8_1_a3
B. Kh. Turmetov. Normed systems and their application to the solutions of differential equations of fractional order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 1, pp. 28-33. http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a3/