Weak and generalized with random variable solutions of stochastic Сauchy problem with additive white noise
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 1, pp. 19-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article describes the solutions of an abstract stochastic Cauchy problem for the $X'(t) = AX(t)+BW(t)$ equation with the $A$ operator, which is the generator of a semigroup of $C_0$ class in a Hilbert space $H$ with the white noise $W$ in a different Hilbert space $\mathrm{H}$ and a linear operator $\mathrm{B: H}\to H$. Two approaches to solve the problem are considered: the Ito integral approach, when the integral problem is solved with ito integral following Wiener process; the approach based on the analysis of the white noise in the original differential problem in the function spaces generalized with random variable. The relation between the solutions is defined.
Keywords: stochastic Cauchy problem; white noise; Wiener process; weak solution; distribution; generalized solution.
@article{VYURM_2016_8_1_a2,
     author = {O. S. Starkova},
     title = {Weak and generalized with random variable solutions of stochastic {{\CYRS}auchy} problem with additive white noise},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {19--27},
     year = {2016},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a2/}
}
TY  - JOUR
AU  - O. S. Starkova
TI  - Weak and generalized with random variable solutions of stochastic Сauchy problem with additive white noise
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 19
EP  - 27
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a2/
LA  - ru
ID  - VYURM_2016_8_1_a2
ER  - 
%0 Journal Article
%A O. S. Starkova
%T Weak and generalized with random variable solutions of stochastic Сauchy problem with additive white noise
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 19-27
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a2/
%G ru
%F VYURM_2016_8_1_a2
O. S. Starkova. Weak and generalized with random variable solutions of stochastic Сauchy problem with additive white noise. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 1, pp. 19-27. http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a2/

[1] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge Univ. Press, 1992, 454 pp. | DOI | MR | Zbl

[2] L. Gawarecki, V. Mandrekar, Stochastic differential equations in infinite dimensions, Springer-Verlag, Berlin–Heidellberg, 2011 | DOI | MR | Zbl

[3] I. V. Melnikova, A. I. Filinkov, U. A. Anufrieva, “Abstract Stochastic Equations. I: Classical and Distributional Solutions”, J. of Math. Sciences, 111:2 (2002), 3430–3465 | DOI | MR

[4] I. V. Melnikova, A. I. Filinkov, “Abstract Stochastic Problems with Generators of Regularized Semigroups”, Commun. Appl. Anal., 13:2 (2009), 195–212 | MR | Zbl

[5] Alshanskiy M. A., Mel'nikova I. V., “Regularized and generalized solutions of infinite-dimensional stochastic problems”, Sbornik: Mathematics, 202:11 (2011), 1565–1592 | DOI | DOI | MR | Zbl

[6] T. Hida, Analysis of Brownian functionals, Carleton Univ., Ottawa, 1975, 61 pp. | MR | Zbl

[7] H. Holden, B. Oksendal, J. Uboe, T. Zhang, Stochastic partial differential equations. A modeling, white noise functional approach, 2nd ed., Springer, New York, NY, 2010, 305 pp. | DOI | MR | Zbl

[8] H. H. Kuo, White Noise Distribution Theory, CRC Press, Boca Raton, FL, 1996, 378 pp. | MR | Zbl

[9] Z. Huang, J. Yan, Introduction to Infinite Dimensional Stochastic Analysis, Kluwer Academic Publishers, Dordrecht; Science Press, Beijing, 2000, 296 pp. | MR | Zbl

[10] Yu. G. Kondratiev, L. Streit, “Spaces of white noise distribution: Constructions, Descriptions, Applications. I”, Reports on Math. Phys., 33:3 (1993), 341–366 | DOI | MR

[11] A. Filinkov, J. Sorensen, “Differential equations in spaces of abstract stochastic distributions”, Stochastics and Stochastics Reports, 72:3–4 (2002), 129–173 | DOI | MR | Zbl

[12] Alshanskiy M. A., “The Ito integral and the Hitsuda–Skorohod integral in the infinite dimensional case”, Sib. Elektron. Mat. Izv., 11 (2014), 185–199 (in Russ.) | Zbl

[13] I. V. Melnikova, “Generalized solutions of differential-operator equations with singular white noise”, Differential Equations, 49:4 (2013), 475–486 | DOI | MR | Zbl

[14] Mel'nikova I. V., Alshanskiy M. A., Proceedings of the Crimean autumn mathematical school-symposium, CMFD, PFUR, 53, M., 2014, 30–63 (in Russ.)

[15] D. W. Stroock, S. R. S. Varadhan, Multidimensional diffusion processes, Reprint of the 2nd corrected printing (1997), Springer, Berlin, 2006, 338 pp. | MR | Zbl