About the unsolvability of Schwarz's task for some types of matrices
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 1, pp. 13-18
Cet article a éte moissonné depuis la source Math-Net.Ru
The task of Schwarz is considered for 2-vector functions, being analytic in a circle by Douglis. It is proved that for some types of matrices and boundary analytic functions the task has no solutions. The example is given.
Keywords:
holomorphic function; analytic continuability; matrix; eigenvector; region; Lyapunov contour.
@article{VYURM_2016_8_1_a1,
author = {V. G. Nikolaev},
title = {About the unsolvability of {Schwarz's} task for some types of matrices},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {13--18},
year = {2016},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a1/}
}
TY - JOUR AU - V. G. Nikolaev TI - About the unsolvability of Schwarz's task for some types of matrices JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2016 SP - 13 EP - 18 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a1/ LA - ru ID - VYURM_2016_8_1_a1 ER -
%0 Journal Article %A V. G. Nikolaev %T About the unsolvability of Schwarz's task for some types of matrices %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2016 %P 13-18 %V 8 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a1/ %G ru %F VYURM_2016_8_1_a1
V. G. Nikolaev. About the unsolvability of Schwarz's task for some types of matrices. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 1, pp. 13-18. http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a1/
[1] Soldatov A. P., “The Schwarz problem for Douglis analytic functions”, Journal of Mathematical Sciences, 173:2 (2011), 221–224 | DOI | MR | Zbl
[2] Muskhelishvili N. I., Singular integral equations, Nauka Publ., M., 1968, 342 pp. (in Russ.)
[3] Nikolaev V. G., “About a transformation of Schwarz problem”, Vestnik Samarskogo gosudarstvennogo universiteta, 2012, no. 6(97), 27–34
[4] Privalov I. I., Introduction to the theory of functions of a complex variable, Vysshaya shkola Publ., M., 1999, 432 pp. | MR