About the unsolvability of Schwarz's task for some types of matrices
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 1, pp. 13-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The task of Schwarz is considered for 2-vector functions, being analytic in a circle by Douglis. It is proved that for some types of matrices and boundary analytic functions the task has no solutions. The example is given.
Keywords: holomorphic function; analytic continuability; matrix; eigenvector; region; Lyapunov contour.
@article{VYURM_2016_8_1_a1,
     author = {V. G. Nikolaev},
     title = {About the unsolvability of {Schwarz's} task for some types of matrices},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {13--18},
     year = {2016},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a1/}
}
TY  - JOUR
AU  - V. G. Nikolaev
TI  - About the unsolvability of Schwarz's task for some types of matrices
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2016
SP  - 13
EP  - 18
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a1/
LA  - ru
ID  - VYURM_2016_8_1_a1
ER  - 
%0 Journal Article
%A V. G. Nikolaev
%T About the unsolvability of Schwarz's task for some types of matrices
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2016
%P 13-18
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a1/
%G ru
%F VYURM_2016_8_1_a1
V. G. Nikolaev. About the unsolvability of Schwarz's task for some types of matrices. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 1, pp. 13-18. http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a1/

[1] Soldatov A. P., “The Schwarz problem for Douglis analytic functions”, Journal of Mathematical Sciences, 173:2 (2011), 221–224 | DOI | MR | Zbl

[2] Muskhelishvili N. I., Singular integral equations, Nauka Publ., M., 1968, 342 pp. (in Russ.)

[3] Nikolaev V. G., “About a transformation of Schwarz problem”, Vestnik Samarskogo gosudarstvennogo universiteta, 2012, no. 6(97), 27–34

[4] Privalov I. I., Introduction to the theory of functions of a complex variable, Vysshaya shkola Publ., M., 1999, 432 pp. | MR