On the number of $OE$-trails for a fixed transition system
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 1, pp. 5-12
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence of $OE$-trail for a plane Eulerian graph had been established earlier and algorithm of its constructing was suggested. This paper is devoted to a question of enumeration of $OE$-trails for a system of transitions induced by a particular $OE$-trail. The upper bound of this estimation does not exceed the double sum of vertices adjacent the outer face and sum of cutvertices degrees. This bound is reachable if a transition system satisfies any $A$-trail. The number of $OE$-trails for an arbitrary chosen transition system is also examined.
Keywords:
planar graph; Eulerian cycle; transition system; $A$-trail; ordered enclosing.
@article{VYURM_2016_8_1_a0,
author = {T. A. Makarovskikh},
title = {On the number of $OE$-trails for a fixed transition system},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--12},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a0/}
}
TY - JOUR AU - T. A. Makarovskikh TI - On the number of $OE$-trails for a fixed transition system JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2016 SP - 5 EP - 12 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a0/ LA - ru ID - VYURM_2016_8_1_a0 ER -
%0 Journal Article %A T. A. Makarovskikh %T On the number of $OE$-trails for a fixed transition system %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2016 %P 5-12 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a0/ %G ru %F VYURM_2016_8_1_a0
T. A. Makarovskikh. On the number of $OE$-trails for a fixed transition system. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a0/