@article{VYURM_2016_8_1_a0,
author = {T. A. Makarovskikh},
title = {On the number of $OE$-trails for a fixed transition system},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--12},
year = {2016},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a0/}
}
TY - JOUR AU - T. A. Makarovskikh TI - On the number of $OE$-trails for a fixed transition system JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2016 SP - 5 EP - 12 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a0/ LA - ru ID - VYURM_2016_8_1_a0 ER -
%0 Journal Article %A T. A. Makarovskikh %T On the number of $OE$-trails for a fixed transition system %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2016 %P 5-12 %V 8 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a0/ %G ru %F VYURM_2016_8_1_a0
T. A. Makarovskikh. On the number of $OE$-trails for a fixed transition system. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 8 (2016) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2016_8_1_a0/
[1] Panyukova T. A., Diskretnyy analiz i issledovanie operatsiy, 18:2 (2011), 64–74 (in Russ.) | MR | Zbl
[2] T. A. Makarovskikh, “The Algorithm for Constructing of Cutter Optimal Path”, Journal of Computational and Engineering Mathematics, 1:2 (2014), 52–61
[3] Frolovskiy V. D., Informatsionnye tekhnologii v proektirovanii i proizvodstve, 2005, no. 4, 63–66 (in Russ.)
[4] T. A. Panioukova, A. V. Panyukov, “The Algorithm for Tracing of Flat Euler Cycles with Ordered Enclosing”, Izvestiya Chelyabinskogo nauchnogo tsentra UrO RAN, 2000, no. 4(9), 18–22 | MR
[5] H. Fleischner, Eulerian Graphs and Related Topics, v. 1, Ann. Discrete Mathematics, 45, 1990, 450 pp. | MR | Zbl
[6] Belyy S. B., Matematicheskie zametki, 34:4 (1983), 625–628 (in Russ.) | MR | Zbl
[7] Panyukova T. A., Diskretnyy analiz i issledovanie operatsiy. Ser. 2, 13:2 (2006), 31–43 (in Russ.) | MR | Zbl
[8] Panyukova T. A., “Construction of Euler cycles ordered grapple as a mathematical model of solving the cutting problem”, Modern information technology and IT education, Proceedings of the VIII International Scientific and Practical Conference, ed. V. A. Sukhomlin, INTUIT. RU Publ., M., 2013, 706–713 (in Russ.) | Zbl