On solutions of the wave equation with a minor term
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 4, pp. 74-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A correspondence between solutions of the wave equation and the wave equation with a minor term in a star-like domain was obtained. This result is an analogue of the corresponding result obtained earlier for both the Helmholtz equation and the Laplace equation.
Keywords: wave equation; normalized system of functions.
@article{VYURM_2015_7_4_a9,
     author = {E. Y. Chistyakov},
     title = {On solutions of the wave equation with a minor term},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {74--76},
     year = {2015},
     volume = {7},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a9/}
}
TY  - JOUR
AU  - E. Y. Chistyakov
TI  - On solutions of the wave equation with a minor term
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2015
SP  - 74
EP  - 76
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a9/
LA  - ru
ID  - VYURM_2015_7_4_a9
ER  - 
%0 Journal Article
%A E. Y. Chistyakov
%T On solutions of the wave equation with a minor term
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2015
%P 74-76
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a9/
%G ru
%F VYURM_2015_7_4_a9
E. Y. Chistyakov. On solutions of the wave equation with a minor term. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 4, pp. 74-76. http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a9/

[1] V. V. Karachik, “Normalized system of functions with respect to the Laplace operator and its applications”, Journal of Mathematical Analysis and Applications, 287:2 (2003), 577–592 | DOI | MR | Zbl

[2] Karachik V. V., Method of normalized systems of functions, Izdatel'skiy tsentr YuUrGU, Chelyabinsk, 2014, 452 pp. (in Russ.)

[3] Karachik V. V., “On one representation of analytic functions by harmonic functions”, Siberian Advances in Mathematics, 18:2 (2008), 103–117 | DOI | MR | MR | Zbl

[4] Karachik V. V., “On an expansion of Almansi type”, Mathematical Notes, 83:3 (2008), 335–344 | DOI | DOI | MR | Zbl

[5] Karachik V. V., “On the arithmetic triangle arising from the solvability conditions for the Neumann problem”, Mathematical Notes, 96:2 (2014), 217–227 | DOI | DOI | MR | MR | Zbl

[6] V. V. Karachik, “On one set of orthogonal harmonic polynomials”, Proceedings of AMS, 126:12 (1998), 3513–3519 | DOI | MR | Zbl

[7] Karachik V. V., “Polynomial solutions to partial differential equations with constant coefficients, I”, Bulletin of South Ural State University. Series of “Mathematics. Mechanics. Physics”, 10(227):4 (2011), 4–17 (in Russ.)